\(x^2-5x+20=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\left(\dfrac{5}{2}\right)^2+20=0\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{55}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=-\dfrac{55}{4}\)
Vì \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\in R\)
Mà \(\left(x-\dfrac{5}{2}\right)^2=-\dfrac{55}{4}\) (vô lí)
\(\Rightarrow S=\varnothing\)
Lời giải:
$x^2-5x+20=x^2-2.2,5x+2,5^2+13,75=(x-2,5)^2+13,75\geq 0+13,75>0$ với mọi $x\in\mathbb{R}$
Do đó pt $x^2-5x+20=0$ vô nghiệm (đpcm)