Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tran thi mai anh

Chứng minh :

Nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\)

Nguyễn Việt Lâm
21 tháng 3 2019 lúc 12:22

\(x;y;z\ne0\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\\xy=-z\left(x+y+z\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-y\\xy+xz+yz+z^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\\left(x+z\right)\left(y+z\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

- Với \(x=-y\Rightarrow\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{-y^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)

\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{-y^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)

\(\Rightarrow\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\)

2 trường hợp còn lại tương tự


Các câu hỏi tương tự
Nguyễn Thái Sơn
Xem chi tiết
khong có
Xem chi tiết
Lăng
Xem chi tiết
Phan Tiến Nhật
Xem chi tiết
Trần Bảo Hân
Xem chi tiết
Quỳnh Phương
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
Hoàng Thị Mai Trang
Xem chi tiết
Hạ Vy
Xem chi tiết