Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5⋮121.
=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121
Mặt khác, n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11.
mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮121
=> (2n+3)^2+11 ko chia hết cho 121
=>dpcm.
Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5⋮121.
=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121
Mặt khác, n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11.
mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮121
=> (2n+3)^2+11 ko chia hết cho 121
=>dpcm.
Chứng minh: \(n^2+3n+5\) không chia hết cho 121
Chứng minh \(n^2+n+5\) không chia hết cho 121 với mọi n ∈ N.
1 tìm n ∈ N để
3n + 2 chia hết n-1
n^2 + 2n + 7 chia hết n +2
2 chứng minh rằng ∀ n ∈ N thì
2^4n+2 +1 chia hết 5
7 ^4n-1 chia hết 5
3^4n+1+2 chia hết 5
Chứng minh với mọi số tự nhiên n ta có: \(11.5^{2n}+2^{3n+2}+2^{3n+1}\) chia hết cho 17
Chứng minh với mọi số tự nhiên n ta có: \(11.5^{2n}+2^{3n+2}+2^{3n+1}\) chia hết cho 17
Chứng minh với mọi số tự nhiên n ta có: \(11.5^{2n}+2^{3n+2}+2^{3n+1}\) chia hết cho 17
Chứng minh với mọi số tự nhiên n ta có: \(11.5^{2n}+2^{3n+2}+2^{3n+1}\) chia hết cho 17
Chứng minh với mọi số tự nhiên n ta có: \(11.5^{2n}+2^{3n+2}+2^{3n+1}\) chia hết cho 17
Chứng minh rằng một số nguyên dương n thì 3n + 2 - 2n + 2 + 3 n trừ 2 n chia hết cho 10