ta có : a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+b3+c3-3abc \(\ge\) 0
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ac)\(\ge\)0
Ta có BĐT a2+b2+c2-ab-bc-ca\(\ge\)0
nên BĐT trên đúng vì a+b+c>0
BĐT a2+b2+c2-ab-bc-ca\(\ge\) 0
\(\Leftrightarrow\) 2a2+2b2+2c2-2ab-2bc-2ca \(\ge\) 0
\(\Leftrightarrow\) (a-b)2+(b-c)2+(c-a)2\(\ge\) 0
Dấu "=" xảy ra khi a=b=c