Chứng minh bằng phản chứng:
1) Nếu m^2 + n^2 chia hết cho 3 thì m, n chia hết cho 3
2) Có vô số số nguyên tố dạng 4k+3
Mọi người giúp mình với, thứ 7 mình thi rồi!
cho p và p+4 là các số nguyên tố lớn hơn 3. chứng minh p+8 là hợp số
CM: mệnh đề 'có vô số nguyên tố' là mệnh đề đúng
chứng minh phản chứng mệnh đề : "pt 15x^2 - 7y^2 = 9 không có nghiệm nguyên"
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
chứng minh
\(\sqrt{3}\) là số vô tỉ
với mọi n ∈ N: \(n^2\) ⋮ 3 => n ⋮ 3
chứng minh bằng phản chứng (m^2+n^2) chia hết cho 3 thì m và n chia hết cho 3, giúp e với mai e làm 1 tiết
Dùng phương pháp chứng minh phản chứng, chứng minh định lý sau: "Với mọi số nguyên dương a,b nếu a2+b2 chia hết cho 8 thì a,b không đồng thời là các số lẻ"