Ta có :\(A=2^1+2^2+2^3+...+2^{2010}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=\left(2+2^3+...+2^{2009}\right)\cdot3\) chia hết cho 3
=> A chia hết cho 3 ( đpcm )
Ta lại có : \(A=2^1+2^2+2^3+...+2^{2010}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2\cdot7+...+2^{2008}\cdot7\)
\(=\left(2+...+2^{2008}\right)\cdot7\) chia hết cho 7
Vậy A chia hết cho cả 3 và 7 ( đpcm )