Cho các số thực dương a,b,c thảo mãn \(a^2+b^2+c^2=1\). CHứng minh:
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ac\)
Cho a, b > 0 và ab > 1. Chứng minh rằng: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\) ≥ \(\frac{2}{1+ab}\)
Cho a,b,c > 0 và ab+bc+ca=1 Chứng minh \(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le2\left(a+b+c\right)\)
Cho a, b ∈ R. Chứng minh rằng: a2 +b2 +1 ≥ ab + a +b
HELP! Chứng minh
a, \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
b, \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)
Chứng minh rằng vói mọi số thực a , b ,c có : ( a ^ 4 + b ^ 4 ) ≥ a^3b + ab^ 3
b) a ^ 2 + b^ 2 + c^ 2 ≥ ab + bc + ca
Chứng minh đẳng thức sau:
\(\frac{2}{\sqrt{ab}}\div\left(\frac{1}{a}-\frac{1}{b}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)
Chứng minh rằng: a2 + b2 + c2 ≥ ab + bc + ca
bà 1 rút gọn biểu thức :\(\sqrt{9ab}\) + 7\(\sqrt{\dfrac{a}{b}}\) - 5\(\sqrt{\dfrac{b}{a}}\) - 3ab \(\sqrt{\dfrac{1}{ab}}\)
bài 2 :cho a>0,b>0 chứng minh : \(\dfrac{a^2b}{a-b}\).\(\sqrt{\dfrac{8\left(a^2-2ab+b^2\right)}{75a^4b}}\) = \(\dfrac{2}{15}\) .\(\sqrt{6b}\)