Cho phương trình x + \(2\sqrt{x-1}\) - m2 + 6m - 11 = 0, m là tham số. Chứng minh rằng phương trình có nghiệm với mọi giá trị của m
Cho pt: x2 - 2 ( m - 1)x+ m - 4 = 0
a) chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m
b) Gọi x1,x2 là 2 nghiệm của pt. Chứng minh biểu thức A=x1(1-x2)+x2(1-x1) không phụ thuộc vào m
HELP giúp mình với câu này mình khó làm quá Câu 3 : cho đường tròn tâm O đường kính AB . Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ) . Lấy điểm E trên cung nhỏ BC ( E khác B và C ) , AE cắt CD tại F Chứng minh : A) BEFI là tứ giác nội tiếp đường tròn B) AE . AF = AC . AD
Cho ba điểm A, O, B thẳng hàng theo thứ tự đó, OA = a; OB = b (a, b cùng đơn vị cm).
Qua A và B vẽ theo thứ tự các tia Ax và By cùng vuông góc với AB và cùng phía với AB. Qua O vẽ hai tia vuông góc với nhau và cắt Ax ở C, By ở D (xem hình 116).
a) Chứng minh AOC và BDO là hai tam giác đồng dạng; từ đó suy ra tích AC.BD không đổi.
b) Tính diện tích hình thang ABDC khi \(\widehat{COA}=60^o.\)
c) Với \(\widehat{COA}=60^o\) cho hình vẽ quay xung quanh AB. Hãy tính tỉ số thể tích với các hình do các tam giác AOC và BOD tạo thành.
Giúp em với giải với vẽ hình luôn ạ !
1. Cho tam giác ABC có A là một góc vuông. D là một điểm nằm trên cạnh AB. Đường Tròn đường kính BD cắt BC tại E. Các đường thẳng CD;AE lần lượt cắt đường tròn tại các điểm thứ hai F và G.
a) Chứng minh CAFB nội tiếp
b) Chứng minh AB.ED=AC.EB
c) Chứng tỏ AC//FG
d) Chứng minh AC;DE;BF đồng quy
2.Cho tam giác ABC vuông tại A, đường cao AH. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, d là tiếp tuyến của đường tròn tại A, các tiếp tuyến của đường tròn tại B và C lần lượt cắt d theo thứ tự ở D và E.
Chứng minh rằng:
a) Tam giác DOE vuông
b) DE = BD + CE
c) BD . CE = R2 ( R là bán kính của (O) )
d) BC là tiếp tuyến của đường tròn đường kính DE.
Cho nửa đường tròn ( O;R), đường kính AB , Bán kính CO vuông góc với AB , M là một điểm bất kì trên cung nhỏ AC ( M khác A,C) BM cắt AC tại H , K là hình chiếu của H trên AB a. Số đo cung nhỏ BC b.Chứng minh BCHK là tứ giác nội tiếp c. Trên đường thẳng BM lấy D sao cho BD = AM . Chứng minh CM vuông góc với CD Mong mn giúp mik mai mik thi gấp cận kề rồi :((
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn (O) có bán kính R=3cm. Các tiếp tuyến với (O) tại B và C cắt nhau tại D.
1. Chứng minh tứ giác OBDC nội tiếp đường tròn
2. Gọi M là giao điểm của BC và OD. Biết OD = 5cm. Tính diện tích tam giác BCD
3. Kẻ đường thẳng d đi qua D và song song với đường tiếp tuyến với (O) tại A, d cắt các đường thẳng AB, AC lần lượt tại P và Q. Chứng minh AB.AP = AQ.AC
4. Chứng minh ∠PAD = ∠MAC
<Em chỉ chưa biết làm 4. thôi, nếu mọi người ngại ghi dài thì chỉ cần viết 4. ra cho em với thôi nha ^^ Cảm ơn nhiều <3 >
Cho hai đường tròn (O) và (O )cắt nhau tại A và B. Vẽ AC, AD thứ tự là đường kính của hai đường tròn (O) và (O )chứng minh ba điểm C, B, D thẳng hàng. b) Đường thẳng AC cắt đường tròn (O )tại E; đường thẳng AD cắt đường tròn (O) tại F (E, F khác A). Chứng minh 4 điểm C, D, E, F cùng nằm trên một đường tròn. c) Một đường thẳng d thay đổi luôn đi qua A cắt (O) và (O ).. ứ tự tại M và N. Xác định vị trí của d để CM + DN đạt giá trị lớn nhất.
Cho phương trình x2 – 2mx – 1 = 0 (1).
a/ Chứng minh rằng với mọi giá trị của m thì phương trình (1) luôn có hai nghiệm phân biệt.
b/ Tìm m để phương trình có hai nghiệm x1, x2 thoả mãn x12 + x22 = 7.