Chứng minh rằng với mọi số nguyên dương n ta đều có \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+\dfrac{1}{5\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
Chứng minh rằng: \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{1}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\) với mọi n là số tự nhiên khác 0
C/m với mọi n nguyên dương thì
\(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+.....+\dfrac{1}{2n\sqrt{n+1}}+\dfrac{1}{\sqrt{n+1}}>1\)
Chứng minh \(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+\dfrac{1}{6\sqrt{4}}+....+\dfrac{1}{2n\sqrt{n+1}}+\dfrac{1}{\sqrt{n+1}}>1\)
Em không rõ là > hay < 1 ấy ạ. Anh chị nào giúp em với
Cho x,y,z>0 thoã mãn: x3+y3+z3=1
Chứng minh rằng: \(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\)
Chứng minh: \(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n},\forall n\ge1\)
Với số tự nhiên n, \(n\ge3\). Đặt \(S_n=\dfrac{1}{3\left(1+\sqrt{2}\right)}+\dfrac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\dfrac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\). Chứng minh: \(S_n< \dfrac{1}{2}\)
Biết a, b là hai số thực dương thỏa mãn: \(a^2+b^2=1\). Chứng minh rằng: \(\dfrac{1}{a}+\dfrac{1}{b}-\left(\sqrt{\dfrac{a}{b}}-\sqrt{\dfrac{b}{a}}\right)^2\ge2\sqrt{2}\)