\(2016^{2015}\equiv2016\left(mod2017\right)\)
\(2018^{2016}\equiv1\left(mod2017\right)\)
Suy ra : \(2016^{2015}+2018^{2016}\equiv1+2016\equiv0\left(mod2017\right)\)
Vậy \(2016^{2015}+2018^{2016}⋮2017\)
\(2016\equiv-1\left(mod2017\right)=>2016^{2015}\equiv-1\left(mod2017\right)\)
\(2018\equiv1\left(mol2017\right)=>2018^{2016}\equiv1\left(mod2017\right)\)
\(=>2016^{2015}+2018^{2016}\equiv0\left(mod2017\right)\)