Hình chóp A.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA bằng a và vuông góc với mặt phẳng (ABCD)
a) Chứng minh rằng các mặt bên kia của hình chóp là những tam giác vuông
b) Mặt phẳng \(\left(\alpha\right)\) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, SC, SD tại B', C', D'. Chứng minh B'D' song song với BD và AB' vuông góc với SB
Câu 5: Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông tâm O cạnh bằng a, góc giữa cạnh bên và mặt đáy 1 góc 60°. Gọi IE lần lượt là là trung điểm của cạnh BC,CD a)Chứng minh: AC vuông góc (SBD) ; BD vuông góc SA b)Chứng minh: (SBC) vuông góc (SOI) c)Tính góc giữa mặt bên và mặt đáy. d)góc giữa OE và mặt (SCD) e)Tính khoảng cách giữa SI và AB.
Cho hình chóp SABCD đáy ABCD là hình vuông cạch a SAB là tam giác đều và vuông góc (ABCD) .Gọi H là trung điểm AB a, Chứng minh SH vuông góc với (ABCD) b, chứng minh tam giác SBC vuông cân c, gọi I là trung điểm chứng minh SC vuông góc với DI
Cho chóp S.ABCD có đáy là hình vuông cạnh a, SA⊥(ABCD), SA=\(a\sqrt{6}\). Tính góc α giữa đường SC và mặt phẳng (SAD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và có \(SA\perp\left(ABCD\right);SA=a\sqrt{2}\). Tính góc giữa SC và mp (SAB) ?
Cho hình chóp S.ABC có tam giác ABC vuông tại A, góc ABC=60 , SB=AB=a , hai mặt bên (SAB) và (SBC) cùng vuông góc với mặt đáy . Gọi H,K lần lượt là hình chiếu vuông góc của B trên SA,SC .
1. Chứng minh : SB\(\perp\) (ABC) và SC \(\perp\) (BHK) .
2. TÍnh góc tạo bởi SA và (BHK) .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và \(SA\perp\left(ABCD\right)\)
a) Chứng minh \(BD\perp SC\)
b) Chứng minh \(\left(SAB\right)\perp\left(SBC\right)\)
c) Cho \(SA=\dfrac{a\sqrt{6}}{3}\). Tính góc giữa SC và mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a√2; SA vuông góc (ABCD) và SA=2a . Gọi E là hình chiếu vuông góc của A trên cạnh SB .
4.1. Chứng minh BD ⊥ (SAC) .
4.2. Chứng minh BC ⊥ (SAB) và (AEC) ⊥ (SBC) .
4.3. Gọi G và K lần lượt là trọng tâm của các tam giác SAD và ACD Tính góc giữa đường thẳng GK và mặt phẳng (SAB) .
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc vs mặt đáy, SA=a căn 3. Gọi O là giao điểm của BD và AC 1. CMR: CD vuông góc ( SAD) 2. CMR: SO vuông góc BD 3.xác định và tính góc giữa SO và mp( ABCD)