cho\(\left\{{}\begin{matrix}a\ge2\\b\ge3\\c\ge6\end{matrix}\right.\)
tìm max p= \(\dfrac{bc\sqrt{a-2}+ca\sqrt[3]{b-3}+ab\sqrt[4]{c-6}}{abc}\)
Tìm m để hệ bất phương trình có nghiệm
a) \(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3\left(x-6\right)< -3\\\dfrac{5x+m}{2}>7\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-1\le0\\x-m>0\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x-2\ge0\\\left(m^2+1\right)x< 4\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}m\left(mx-1\right)< 2\\m\left(mx-2\right)\ge2m+1\end{matrix}\right.\)
Giải hệ
a) \(\left\{{}\begin{matrix}x^2+y^2-2y-6+2\sqrt{2y+3}=0\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2y+2y+x=4xy\\\dfrac{1}{x^2}+\dfrac{1}{xy}+\dfrac{x}{y}=3\end{matrix}\right.\)
cho \(\left\{{}\begin{matrix}a,b,c>0\\a^3+b^3+c^3\le\dfrac{3}{8}\end{matrix}\right.\)
cmr \(a^2+b^2+c^2\le\dfrac{3}{4}\)
Ai hướng dẫn mình với ạ!!
1. Hệ bpt \(\left\{{}\begin{matrix}15x-2>2x+\dfrac{1}{3}\\2\left(x-4\right)< \dfrac{3x-14}{2}\end{matrix}\right.\) có tập nghiệm nguyên là?
2. Cho hệ bpt \(\left\{{}\begin{matrix}2x-4< 0\\mx+m-2>0\end{matrix}\right.\). Gia trị của m để hệ bpt vô nghiệm
3. Với giá trị nào của m thì hệ bpt \(\left\{{}\begin{matrix}x-2m\ge2\\x-m^2\le-1\end{matrix}\right.\) có nghiệm duy nhất
Tìm m để hệ bất phương trình có nghiệm duy nhất
a) \(\left\{{}\begin{matrix}2x-1\ge3\\x-m\le0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}m^2x\ge6-x\\3x-1\le x+5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge x^2+7x+1\\2m\le8+5x\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}mx\le m-3\\\left(m+3\right)x\ge m-9\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}2m\left(x+1\right)\ge x+3\\4mx+3\ge4x\end{matrix}\right.\)
Giai các hệ bất phương trình sau :
a/ \(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}-2x^2-5x+4< 0\\-x^2-3x+10>0\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}x^2+4x+3\ge0\\2x^2-x-10\le\\2x^2-5x+3>0\end{matrix}\right.0}\)
e/ \(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
f/ \(\left\{{}\begin{matrix}-x^2+4x-7< 0\\x^2-2x-1\ge0\end{matrix}\right.\)
Cho \(\left\{{}\begin{matrix}a\ne0\\b^2-4ac< 2b-1\end{matrix}\right.\). Chứng minh hệ sau vô nghiệm:
\(\left\{{}\begin{matrix}ax^2+bx+c=y\\ay^2+by+c=z\\az^2+bz+c=x\end{matrix}\right.\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x+\dfrac{y}{\sqrt{1+x^2}+x}+y^2=0\\\dfrac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x^2+4}+\sqrt{y^2+2y-4}=4\\\sqrt{x^2+9}+y=5\end{matrix}\right.\)