Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Đăng Nhất

Cho\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}\). Tính giá trị của mỗi tỉ số trong dãy đó.

Trần Thị Hiền
2 tháng 1 2017 lúc 20:26

TH1:x+y+z=0

=>\(\left\{\begin{matrix}y+z=-x\\x+z=-y\\x+y=-z\end{matrix}\right.\)

=>\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x}{-x}=\frac{y}{-y}=\frac{z}{-z}=-1\)

TH2: x+y+z\(\ne\)0

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{1}{2}\)

Vậy\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}=\frac{1}{2}\) hoặc \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=-1\)

Nguyễn Huy Tú
2 tháng 1 2017 lúc 19:05

Giải:
+) Xét \(x+y+z=0\)

\(\Rightarrow y+z=-x\)

\(\Rightarrow x+z=-y\)

\(\Rightarrow x+y=-z\)

Ta có: \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}\)

\(=\frac{x}{-x}=\frac{y}{-y}=\frac{z}{-z}=-1\)

+) Xét \(x+y+z\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2x+2y+2z}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

Vậy \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=-1\) hoặc \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{1}{2}\)


Các câu hỏi tương tự
Trần Đăng Nhất
Xem chi tiết
Nguyễn Minh Khuê
Xem chi tiết
nguyễn minh
Xem chi tiết
bịp Tên
Xem chi tiết
Vương Hoàng Ngân
Xem chi tiết
Huỳnh Ngọc Quỳnh Hoa
Xem chi tiết
Friend
Xem chi tiết
Le Thi Viet Chinh
Xem chi tiết
Trần Minh Hưng
Xem chi tiết