a) Kẻ EK vuông góc với AH
Ta có: góc KHD=góc EDH=90 độ
Mà góc KHD và góc EDH là 2 góc đồng vị nên KH//DE
Lại có: góc HKE=góc DHK=90 độ
Mà góc HKE và góc DHK là 2 góc đồng vị nên HD//KE
Vì KH//DE; HD//KE nên HD=KE( tính chất đoạn chắn)
Mà HD=AH nên KE=AH
Vì tam giác ABC vuông tại A nên góc BAH+ góc HAC=90 độ
Vì tam giác AKE vuông tại K nên góc KAE+góc KEA=90 độ
Do đó: góc BAH= góc KEA
Xét tam giác AHB và tam giác EKA có:
góc AHB=góc EKA=90 độ
AH=KE (cmt)
góc BAH=góc AEK (cmt)
=> tam giác AHB=tam giác EKA (g.c.g)
=> AB=AE
b) Vì M là trung điểm của cạnh BE nên AM là đường trung tuyến của tam giác ABE
Mà tam giác ABE vuông tại A nên AM=\(\frac{1}{2}\)BE (1)
M là trung điểm của BE nên DM là đường trung tuyến của tam giác BDE
Mà tam giác BDE vuông tại D nên DM=\(\frac{1}{2}\)BE (2)
Từ (1) và (2) => AM=DM
Xét tam giác HMA và tam giác HMD có:
HM:chung
AH=HD
AM=DM
=> tam giác HMA=tam giác HMD ( c.c.c)
=> góc AHM=góc DHM = \(\frac{1}{2}\)AHD
Mà góc AHD=90 độ nên góc AHM= 90 độ :2 = 45 độ