cho x,y,z >0 thoả mãn \(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=8\)
tìm Max: \(P=\dfrac{x^2+y^2+z^2+14xyz}{4\left(x+y+z\right)+15xyz}\)
cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge4\)
cho các số thực không âm x,y,z đôi một khác nhau đồng thời thoả mãn (x+z)(y+z) =1. Chứng minh rằng
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(x+z\right)^2}+\dfrac{1}{\left(y+z\right)^2}\ge4\)
Cho x, y, z > 0; \(xyz=1\). Chứng minh rằng: \(\dfrac{x^9+y^9}{x^6+x^3y^3+y^6}+\dfrac{y^6+z^6}{y^6+y^3z^3+z^6}+\dfrac{z^6+x^6}{z^6+z^3x^3+x^6}\)
Cho x,y,z>0 và \(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}\ge2\)
Chứng minh: xyz≤\(\dfrac{1}{8}\)
cho các số thực không x,y,z đôi một khác nhau đồng thời thoả mãn (x+z)(y+z) =2. Chứng minh rằng
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(x+z\right)^2}+\dfrac{1}{\left(y+z\right)^2}\ge4\)
Cho x>0, y>0, z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Cho x,y,z > 0 và x+y+z = 2008
Chứng minh : \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{x^4+z^4}{x^3+z^3}\) ≥ 2008