Cho 3 số x,y,z khác 0 đồng thời thỏa mãn \(x+y+z=\frac{1}{2}\);\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\)
Tính giá trị của Q=\(\left(y^{2017}+z^{2017}\right)\left(z^{2019}+x^{2019}\right)\left(x^{2021}+y^{2021}\right)\)
1, Cho hai số dương x,y thỏa mãn x+y=1. Tính giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
2, Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\) . Cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
cho x,y,z ≠ 0 thỏa mãn \(x+y+z=\frac{1}{2}\); \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xyz}=4\); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\) .
Tính \(\left(y^{2017}+z^{2017}\right)\left(z^{2019}+x^{2019}\right)\left(x^{2021}+y^{2021}\right)\)
Cho 3 số thực dương x, y, z thỏa mãn \(x+y+z\le\frac{3}{2}\). Tìm GTNN của biểu thức:
\(P=\frac{x\left(yz+1\right)^2}{z^2_{ }\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
Cho x;y;z là các số thực thỏa mãn: \(\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\).
Tìm giá trị lớn nhất của P = \(\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng \(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Cho x,y,z >0 thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\).Tìm giá trị nhỏ nhất của biểu thức P = \(\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{x\left(x^2+y^2\right)}\)
1 cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
CM: \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
2 Giải hệ pt
\(\left\{{}\begin{matrix}x^2+y^2-xy=5\\x^3+y^3=5x+15y\end{matrix}\right.\)
Cho x, y, z là các số thực dương thỏa mãn \(xy+yz+xz=1\) . Chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)