Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\)
Trên miền \(D=\left\{\left(x;y;z\right):x>0;y>0;z>0;xyz=1\right\}\)
Tìm giá trị nhỏ nhất của biểu thức :
\(P=x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{xz}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
Với x, y, x là các số dương
Xét các số thực dương x,y,z thỏa mãn x=y+z=4 và xy+yz+zx=5. Giá trị nhỏ nhất của biểu thức \(\left(x^3+y^3+z^3\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) bằng :
Cho biểu thức :
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\) với \(\left(x,y,z\right)\in D=\left\{\left(x,y,z\right):x>0;y>0;z>0;x+y+x=1\right\}\)
Tìm giá trị lớn nhất của P
Find the maximum and minimum value of the expression
\(\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)if \(x,y,z\in\left[1,2016\right]\)
Cho 2 số thực \(x,y\) thỏa \(2y^3+7y+2x\sqrt{1-x}=3\sqrt{1-x}+3\left(2y^2+1\right)\). Tìm giá trị lớn nhất của biểu thức \(P=x+2y\).
Xét các số thực dương x,y thỏa mãn \(2018^{2\left(x^2-y+1\right)}=\frac{2x+y}{\left(x+1\right)^2}\) . Tìm gia trị nhỏ nhất \(P_{min}\) của P= 2y-3x
Cho các số thực x,y thỏa mãn \(x+y+1=2\left(\sqrt{x-2}+\sqrt{y+3}\right)\). Giá trị lớn nhất của biểu thức \(M=3^{x+y-4}+\left(x+y+1\right).2^{7-x-y}-3\left(x^2+y^2\right)\) bằng
1) Cho hàm số y=f(x)= \(\frac{3x+1}{\sqrt{x^2+1}}\), giá trị lớn nhất của hàm sồ f(x) trên tập xác định của nó là:
\(A.\sqrt{10}\) \(B.2\) \(C.2\sqrt{2}\) D.Không tồn tại giá trị lớn nhất
2) Hàm số \(y=\frac{x-1}{\sqrt{x^2+2}}\) đạt giá trị lớn nhất và giá trị nhỏ nhất trên đoạn [-3;0] lần lượt tại M , N . Khi đó M.N bằng:
A.2 B.0 C.6 \(D.\sqrt{2}\)
3) Gọi M,N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số \(f\left(x\right)=\left|x-3\right|\sqrt{x+1}\) trên đoạn [0;4] . Tính M+2N:
\(A.\frac{16\sqrt{3}}{9}\) \(B.3+\sqrt{5}\) \(C.\frac{16\sqrt{3}}{3}\) \(D.\sqrt{5}\)