Violympic toán 9

Luyri Vũ

Cho x,y,z > 0 và xyz=1 . Tìm MinP = \(\Sigma\dfrac{1}{x^4\left(y+1\right)\left(z+1\right)}\)

Nguyễn Việt Lâm
11 tháng 7 2021 lúc 14:18

Đặt \(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow abc=1\)

\(P=\sum\dfrac{a^4}{\left(\dfrac{1}{b}+1\right)\left(\dfrac{1}{c}+1\right)}=\sum\dfrac{a^4bc}{\left(b+1\right)\left(c+1\right)}=\sum\dfrac{a^3}{\left(b+1\right)\left(c+1\right)}\)

Ta có:

\(\dfrac{a^3}{\left(b+1\right)\left(c+1\right)}+\dfrac{b+1}{8}+\dfrac{c+1}{8}\ge\dfrac{3a}{4}\)

Tương tự và cộng lại:

\(P+\dfrac{a+b+c}{4}+\dfrac{3}{4}\ge\dfrac{3\left(a+b+c\right)}{4}\Rightarrow P\ge\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)

Bình luận (0)

Các câu hỏi tương tự
Luyri Vũ
Xem chi tiết
Luyri Vũ
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
ghdoes
Xem chi tiết
Thành
Xem chi tiết
Luyri Vũ
Xem chi tiết
Linh Anh
Xem chi tiết
yeens
Xem chi tiết
Vũ Phương Thảo
Xem chi tiết