Áp dụng BĐT Cauchy ta có:
P = \(x^2+y^2+\dfrac{33}{xy}\) \(\ge\) \(\dfrac{\left(x+y\right)^2}{2}+\dfrac{33}{x+y}\) = \(\dfrac{4^2}{2}+\dfrac{33}{4}=\dfrac{65}{4}\)
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}x+y=4\\x=y\end{matrix}\right.\) <=> \(x=y=2\)
Vậy ...............................