Bài 4: Liên hệ giữa phép chia và phép khai phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hki Qqwwqe

cho x,y>0 và x + y <= 1. CMR

\(8\left(x^4+y^4\right)+\dfrac{1}{xy}\ge5\)

Trần Thanh Phương
8 tháng 9 2019 lúc 21:55

Áp dụng BĐT Cô-si :

\(\frac{1}{xy}\ge\frac{1}{\frac{\left(x+y\right)^2}{4}}\ge\frac{1}{\frac{1}{4}}=4\)

Do đó BĐT cần chứng minh \(\Leftrightarrow8\left(x^4+y^4\right)+4\ge5\)

Ta cần chứng minh BĐT sau là đủ : \(8\left(x^4+y^4\right)\ge1\)

Thật vậy: Áp dụng BĐT Cô-si :

\(x^4+\frac{1}{16}\ge\frac{x^2}{2};y^4+\frac{1}{16}\ge\frac{y^2}{2}\)

Cộng vế : \(x^4+y^4+\frac{1}{8}\ge\frac{x^2+y^2}{2}\ge\frac{\frac{\left(x+y\right)^2}{2}}{2}\ge\frac{\frac{1}{2}}{2}=\frac{1}{4}\)

\(\Leftrightarrow x^4+y^4\ge\frac{1}{4}-\frac{1}{8}=\frac{1}{8}\)

\(\Leftrightarrow8\left(x^4+y^4\right)\ge1\)

Ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)


Các câu hỏi tương tự
khanh hoa
Xem chi tiết
Bảo
Xem chi tiết
Lại Quang Phúc
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trân Vũ
Xem chi tiết
Võ Lan Nhi
Xem chi tiết
lê thị như quỳnh
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
ppeachy do
Xem chi tiết