tưởng dân Nam Định nó thi cái này mấy hôm trước rồi mà sao giờ còn đăng zị
tưởng dân Nam Định nó thi cái này mấy hôm trước rồi mà sao giờ còn đăng zị
Giải các hệ phương trình sau
a,\(\left\{{}\begin{matrix}\sqrt{3}x-y=\sqrt{2}\\x-\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}5\left(x-y\right)-3\left(2x+3y\right)=12\\3\left(x+2y\right)-4\left(x+2y\right)=5\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}\dfrac{x+2}{y-1}=\dfrac{x-4}{y+2}\\\dfrac{2x+3}{y-1}=\dfrac{4x+1}{2y+1}\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x+\left(\sqrt{2}+1\right)y=3\sqrt{2}-1\\\left(\sqrt{2}+1\right)x+\left(\sqrt{2}-1\right)y=3\sqrt{2}+1\end{matrix}\right.\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}3\sqrt{x}+2\sqrt{y}=6\\\sqrt{x}-\sqrt{y}=4,5\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\)
giải pt:
a, \(\sqrt{x-2}+\sqrt{y+1995}+\sqrt{z-1996}=\dfrac{1}{2}\left(x+y+z\right)\)
b\(\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}=8-x^2+2x\)
c,\(\left(\sqrt{x+8}-\sqrt{x+3}\right)\left(\sqrt{x^2+11x+24}+1\right)=5\)
giúp tôi giải bài này với thank nhiều
giải hệ phương trình:
a,\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)=\dfrac{1}{2}xy+50\\\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=\dfrac{1}{2}xy-32\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\dfrac{-1}{2}x+\dfrac{1}{3}y=0\\y-x=1\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x\left(y-2\right)=\left(x+2\right)\left(y-4\right)\\\left(x-3\right)\left(2y+7\right)=\left(2x-7\right)\left(y+3\right)\end{matrix}\right.\)
Tìm các giá trị của m để :
a) hệ phương trình \(\left\{{}\begin{matrix}mx-y=5\\2x+3my=7\end{matrix}\right.\) có nghiệm thỏa mãn điều kiện x>0,y<0
b) hệ phương trình \(\left\{{}\begin{matrix}mx+y=3\\4x+my=6\end{matrix}\right.\) có nghiệm thỏa mãn điều kiện x>1,y>0
giải các hệ phương trình sau:
1, \(\left\{{}\begin{matrix}\left(x+2\right)\left(y-2\right)=xy\\\left(x+4\right)\left(y-3\right)=xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{1}{x-3}+\frac{1}{y}=2\\\frac{2}{x-3}-\frac{3}{y}=1\end{matrix}\right.\)
Giải hệ phương trình :3
\(\left\{{}\begin{matrix}x\sqrt{x}+y\sqrt{y}=6\\x^2y+xy^2=20\end{matrix}\right.\)
Giải hệ phương trình:
a,\(\left\{{}\begin{matrix}\text{2 x − 7 y = 20 }\\\text{3 x + 7 y = − 5}\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\text{2 x + 3 y = 8 }\\\text{− 3 x + 5 y = 7 }\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}-2x+\frac{1}{2}y=3\\\text{5 x + 3 y = 11 }\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}\text{( x − 16 )( y + 6 ) = x y − 36 }\\\text{( x + 8 )( y − 3 ) = x y − 54 }\end{matrix}\right.\)
e,\(\left\{{}\begin{matrix}\text{3 x − | y | = 1 }\\\text{5 x + 3 y = 11 }\end{matrix}\right.\)
f,\(\left\{{}\begin{matrix}\frac{3}{x}+\frac{4}{y}=5\\\frac{1}{x}-\frac{1}{y}=1\end{matrix}\right.\)
g,\(\left\{{}\begin{matrix}x+2\sqrt{y-1}=3\\3x+4\sqrt{y-1}=7\end{matrix}\right.\)
Giúp mình với ạ!!!