Có: \(x^5+\dfrac{1}{x^5}=(x^2+\dfrac{1}{x^2}).(x^3+\dfrac{1}{x^3})-(\dfrac{1}{x^2}.x^3+\dfrac{1}{x^3}.x^2)\)
\(=(x^2+\dfrac{1}{x^2}).(x^3+\dfrac{1}{x^3})-(x+\dfrac{1}{x})\)
\(=\left[\left(x+\dfrac{1}{x}\right)^2-2.x.\dfrac{1}{x}\right].\left[\left(x+\dfrac{1}{x}\right)^3-3.x.\dfrac{1}{x}.\left(x+\dfrac{1}{x}\right)\right]-a\)
\(=\left(a^2-2\right).\left(a^3-3a\right)-a\)
\(=a^5-5a^3+6a-a\)
\(=a^5-5a^3+5a\)
Vậy...