Cho x, y, z đôi một khác nhau thỏa mãn: \(x^3+y^3+z^3=3xyz\) và \(xyz\ne0\). Tính: \(B=\dfrac{16.\left(x+y\right)}{z}+\dfrac{3.\left(y+z\right)}{x}-\dfrac{2019.\left(x+z\right)}{y}\)
Rút gọn phân thức:
\(a,\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(b,\dfrac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)
a ,Tính \(A=\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b, Cho a,b,c \(\ne\) 0 thỏa mãn a+b+c=0
CMR: \(M=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=0\)
c, Cho biểu thức :
\(B=\dfrac{y}{\left(x-y\right)\left(y-z\right)}+\dfrac{z}{\left(y-z\right)\left(z-x\right)}+\dfrac{x}{\left(z-x\right)\left(x-y\right)}\)
CMR : Giá trị bth B không phụ thuộc vào giá trị của biến
Cho x, y, z là các số dương thỏa mãn: x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+y\right)\left(y+z\right)}{z+x}+\dfrac{\left(y+z\right)\left(z+x\right)}{x+y}+\dfrac{\left(z+x\right)\left(x+y\right)}{y+z}\)
Rút gọn các phân thức: \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
Cho x,y,z là các số thực dương thoản mãn x+y+z=3xyz
Tìm giá trị nhỏ nhất của \(P=\dfrac{yz}{x^3\left(z+2y\right)}+\dfrac{xz}{y^3\left(x+2z\right)}+\dfrac{xy}{z^3\left(y+2x\right)}\)
Rút gọn
\(\dfrac{x^3+y^3+z^3-3xyz}{xy^2+xz\left(2y+z\right)}.\dfrac{x\left(y^2+z\right)+y\left(x-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\)
Cho x,y,z là các số thực khác 0 và thỏa mãn
A=\(\left\{{}\begin{matrix}x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\\x^3+y^3+z^3=1\end{matrix}\right.\)
Tính giá trị của A=\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
Cho \(x^3+y^3+z^3=3xyz\) và \(x+y+z\ne0\). Giá trị của biểu thức \(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)là