\(x^2-y=a;y^2-z=b\) chứ ko phải dấu chia đâu nha các bạn
\(x^2-y=a;y^2-z=b\) chứ ko phải dấu chia đâu nha các bạn
Cho x^2-y=a
y^2-z=b
z^2-x=c
CMR: Giá trị biểu thức sau ko phụ thuộc vào biến
P=x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
cho 3 số dương x,y,z thỏa mãn : \(x+y+z=xyz\)
CMR : \(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
1. Viết biểu thức dưới dạng bình phương của một tổng
\(2xy^2+x^2y^4+1\)
2, Rút gọn biểu thức :
a, \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
b, \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
Cho \(C=\left(x+y\right)\left(y+z\right)\left(x+z\right)+xyz\)
\(CMR:Q=C-3xyz⋮6\left(\forall x,y,z\in Z\right)\)
Phân tích đa thức thành nhân tử :
\(a,\left(x+y\right)^5-x^5-y^5\)
\(b,\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(y^2+z^2\right)^3\)
\(c,x^9-x^7-x^6-x^5+x^4+x^3+x^2+1\).
Cho \(x+y+z=1\) Chứng minh \(x^3+y^3+z^3-3xyz=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)
Bài 1:
a, Cho ba số x,y,z đôi một khác nhau. Chứng minh rằng:
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)
Phân tích đa thức sau thành nhân tử:
a) \(8\cdot\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z-x\right)^3\)
b) \(\left[4abcd+\left(a^2+b^2\right)\cdot\left(c^2+d^2\right)\right]^2-4\cdot\left[cd\cdot\left(a^2+b^2\right)+ab\cdot\left(c^2+d^2\right)\right]^2\)
Các bạn giúp mk giải bài tập này nhá.mk cảm ơn nhìu
Cộng các phân thức đại số :
\(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)