Cho \(a=\sqrt{2}+\sqrt{7\sqrt[3]{61+46\sqrt{5}}}+1\)
a) Chứng minh : \(a^4-14a^2+9=0\)
b) Giả sử \(f\left(x\right)=x^5+2x^4-14x^3-28x^2+9x+19\)
Tính f(a)
Bài 2: Cho \(a=\dfrac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}\)
a) Xác định đa thức với hệ số nguyên bậc dương nhỏ nhất nhận a làm nghiệm
b) Giả sử \(f\left(x\right)=3x^6+4x^5-7x^4+6x^3+6x^2+x-53\sqrt{2}\)
Tính f(a)
a)
cho f(x) = x^2 - 3x- 5 có 2 nghiệm x1 và x2 . Đặt g(x) = x^2 - 4 . tính T = g(x1)g(x2)
a)\(\sqrt{x^2+2x+10}+x^2+2x+8=0\)
b)\(15x-2x^2-5=\sqrt{2x^2-15x+11}\)
c)\(\sqrt{9x^2+45}+\sqrt{16x^2+80}+3\sqrt{\frac{x^2+5}{16}}-\frac{1}{4}\sqrt{\frac{25x^2+15}{9}}=9\)
d)\(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
e)\(\sqrt{x^2+3x+2}-2\sqrt{2x^2+6x+2}=-\sqrt{2}\)
f)\(\sqrt{x-1}+\sqrt{x+3}-\sqrt{x^2+2x-3}-1=0\)
cho a= \(\sqrt{2}+\sqrt{7+\sqrt[3]{61-46\sqrt{5}}}+1\)
a Cm \(^{a^4-14a^2+9=0}\)
b Giả sử f(x)=\(x^5+2x^4-14x^3-28x^2+9x+19\)
tính f(a)
A= x-2 2+ sqrt x (x>=0); ==( 8x sqrt x -1 2x- sqrt x - 8x sqrt x +1 2x+ sqrt x )= 2x+1 2x-1 vdi x>0,x ne 1 2 ;x ne- 1 2 MS05. Cho A =- a. Rút gọn B. b. Tim x d hat e A B =1
giải phương trình
a)\(\sqrt{2x}-\sqrt{98}=0\)
b)\(\sqrt{2x}=\sqrt{8}\)
c)\(\sqrt{5x^2}=\sqrt{20}\)
d)\(\sqrt{2x}-3\sqrt{8x}+4\sqrt{32x}=52\)
e)\(3\sqrt{x-1}+2\sqrt{4x-4}-3\sqrt{9x-9}=-6\)
f)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
g)\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50+3}=0\)
h)\(\sqrt{x-1}=\sqrt{3}\)
k)\(\sqrt{9x^2-6x+1}=3\)
l)\(\sqrt{2x-1}=2\)
m)\(\sqrt{x+2}=\sqrt{3-x}\)
n)\(\sqrt{4x^2}-4x+1=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
Giải phương trình :
a, \(\sqrt{x+1}=x-1\)
b, \(x-\sqrt{2x+3}=0\)
c, \(\sqrt{x-2}-3\sqrt{\left(x-2\right)\left(x+2\right)}=0\)
d, \(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
e, \(2\sqrt{x+3}=9x^2-x-4\)
f, \(\sqrt{x+1}-\sqrt{x-7}=\sqrt{12-x}\)
g, \(\sqrt{2x+5}-\sqrt{3x-5}=2\)
h, \(\sqrt{x}-\sqrt{x-1}-\sqrt{x-4}+\sqrt{x+9}=0\)
i, \(x^2+2x-\sqrt{x^2+2x+1}-5=0\)
k, \(\sqrt{x+8-6\sqrt{x+1}}=4\)
l, \(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)
Làm được phần nào thì giúp mình nha đang cần gấp !!!
Giải phương trình
a,\(\sqrt{x^2+x-20}=\sqrt{x-4}\)
b,\(\sqrt{x+1}+\sqrt{2-x}=\sqrt{6}\)
c,\(\sqrt{x+2\sqrt{x-1}=2}\)
d,\(\sqrt{2x-2+2\sqrt{2x-3}+}\sqrt{2x+13+8\sqrt{2x-3}=}5\)
e, \(\sqrt{x^2-1}-x^2+1=0\)
f,\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
g,\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
cho pt x2-2mx+m-6=0. tìm m để
a,pt có 2 nghiệm x1,x2 thỏa mãn
1, x12 +x22=15
2, /x1-x2/ =\(\sqrt{20}\)
3, /x1/+/x2/=6