Cho \(a=\sqrt{2}+\sqrt{7\sqrt[3]{61+46\sqrt{5}}}+1\)
a) Chứng minh : \(a^4-14a^2+9=0\)
b) Giả sử \(f\left(x\right)=x^5+2x^4-14x^3-28x^2+9x+19\)
Tính f(a)
Bài 2: Cho \(a=\dfrac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}\)
a) Xác định đa thức với hệ số nguyên bậc dương nhỏ nhất nhận a làm nghiệm
b) Giả sử \(f\left(x\right)=3x^6+4x^5-7x^4+6x^3+6x^2+x-53\sqrt{2}\)
Tính f(a)
a)
a)\(\sqrt{x^2+2x+10}+x^2+2x+8=0\)
b)\(15x-2x^2-5=\sqrt{2x^2-15x+11}\)
c)\(\sqrt{9x^2+45}+\sqrt{16x^2+80}+3\sqrt{\frac{x^2+5}{16}}-\frac{1}{4}\sqrt{\frac{25x^2+15}{9}}=9\)
d)\(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
e)\(\sqrt{x^2+3x+2}-2\sqrt{2x^2+6x+2}=-\sqrt{2}\)
f)\(\sqrt{x-1}+\sqrt{x+3}-\sqrt{x^2+2x-3}-1=0\)
Tìm GTLN:
a) A= \(\sqrt{3-2x^2}\)
b) B= \(\sqrt{-9x^2+6x+3}\)
c) B= \(5+\sqrt{-4x^2-4x}\)
d) C= \(\sqrt{-x^2+x+\frac{3}{4}}\)
e) D= \(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
g) G= \(\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
f) F= \(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
Rút gọn các biểu thức sau:
a) \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\), \(x\ge0\)
b) \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\sqrt{\dfrac{9x^3}{64}}\), \(x>0\)
c) \(C=\dfrac{y}{2}+\dfrac{3}{4}\sqrt{1+9y^2-6y}-\dfrac{3}{2}\), \(y\le\dfrac{1}{3}\)
Bài 1 : Rút gọn biểu thức với giả thiết các biểu thức đều có nghĩa
a) A = \(4\sqrt{\frac{25x}{4}}-\frac{8}{3}\sqrt{\frac{9x}{4}}-\frac{4}{3x}\sqrt{\frac{9x^3}{54}}\left(x>0\right)\)
b) B = \(\frac{x}{2}+\frac{3}{4}\sqrt{1-4x+4x^2}-\frac{3}{2}\left(x\le\frac{1}{2}\right)\)
Bài 3 : Giải PT
a) \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
b) \(\sqrt{4x^2-9}=2\sqrt{2x+3}\)
c) \(3x-7\sqrt{x}+4=0\)
Bài 4 : Trục căn thức mẫu và rút gọn
a) \(\frac{9}{\sqrt{3}}\)
b) \(\frac{3}{\sqrt{5}-\sqrt{2}}\)
c) \(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
d) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
Vậy thoiiiii :))) Giúp em với mọi người :")))
Giải phương trình :
a, \(\sqrt{x+1}=x-1\)
b, \(x-\sqrt{2x+3}=0\)
c, \(\sqrt{x-2}-3\sqrt{\left(x-2\right)\left(x+2\right)}=0\)
d, \(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
e, \(2\sqrt{x+3}=9x^2-x-4\)
f, \(\sqrt{x+1}-\sqrt{x-7}=\sqrt{12-x}\)
g, \(\sqrt{2x+5}-\sqrt{3x-5}=2\)
h, \(\sqrt{x}-\sqrt{x-1}-\sqrt{x-4}+\sqrt{x+9}=0\)
i, \(x^2+2x-\sqrt{x^2+2x+1}-5=0\)
k, \(\sqrt{x+8-6\sqrt{x+1}}=4\)
l, \(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)
Làm được phần nào thì giúp mình nha đang cần gấp !!!
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
Giải:
1)a) \(17\sqrt{3x-1}=3x\)
b) \(\sqrt{2+\sqrt{3x-5}}=\sqrt{x+1}\)
c)\(\sqrt{\dfrac{5x+7}{x+3}}=4\)
2)Giai pt :
a) x+y+12=\(4\sqrt{x}+6\sqrt{y}-1\)
b) \(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\)
c)\(\sqrt{x+\sqrt{14x-4y}}+\sqrt{x-\sqrt{14x-4y}}=\sqrt{14}\)
d)x-\(4\sqrt{2x+2}-2\sqrt{2-x+9}=0\)
giải phương trình
a)\(\sqrt{2x}-\sqrt{98}=0\)
b)\(\sqrt{2x}=\sqrt{8}\)
c)\(\sqrt{5x^2}=\sqrt{20}\)
d)\(\sqrt{2x}-3\sqrt{8x}+4\sqrt{32x}=52\)
e)\(3\sqrt{x-1}+2\sqrt{4x-4}-3\sqrt{9x-9}=-6\)
f)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
g)\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50+3}=0\)
h)\(\sqrt{x-1}=\sqrt{3}\)
k)\(\sqrt{9x^2-6x+1}=3\)
l)\(\sqrt{2x-1}=2\)
m)\(\sqrt{x+2}=\sqrt{3-x}\)
n)\(\sqrt{4x^2}-4x+1=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)