Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-1\end{matrix}\right.\)
\(P=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(P=2^3-3.\left(-1\right).2=14\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-1\end{matrix}\right.\)
\(P=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(P=2^3-3.\left(-1\right).2=14\)
Cho phương trình:\(x^2-2\left(m+1\right)x+2m-2=0\) với x là ẩn số.
a)Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m .
b) Gọi hai nghiệm của phương trình là x1 , x2 , tính theo m giá trị của biểu thức E = \(x_1^2+2\left(m+1\right)x_2+2m-2\)
Cho phương trình:\(x^{2-}\left(m+5\right).x-m+6=0\)(1),( x là ẩn,m là tham số)
a.Giải phương trình với m=1
b.Với giá trị nào của m thì phương trình (1) có 2 nghiệm x1,x2 thỏa mãn:
\(x_1^2+x_1x_2^2=24\)
x2-(m+2)x+2m=0
Tìm m để phương trình có 2 nghiệm x1,x2 phân biệt thỏa mãn\(\left(x_1+x_2\right)^2-x_1x_2\le3\)
Cho phương trình \(x^2-3x+1=0\).Gọi \(x_1\)và \(x_2\)là 2 nghiệm của phương trình.Hãy tính giá trị biểu thức A=\(x^2_1+x^2_2\)
Cho pt (ẩn x): \(x^2-\left(2m+3\right)x+m=0.\) Gọi x1 x2 là 2 nghiệm của phương trình đã cho. Tìm GTNN m của bt \(x_1^2+x_2^2\)
Cho phương trình \(x^2-2\left(m-1\right)x+m^2-m-1=0\) với 2 nghiệm là \(x_1,x_2\) . Tìm GTNN của \(M=\left(x_1-1\right)^2+\left(x_2-1\right)^2+m\)
1.Giải phương trình, hệ phương trình: a) \(3\sqrt{x^3+8}=2x^2-3x+10\)
b) \(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{matrix}\right.\)
2. cho hàm số \(y=x^2\). tìm các giá trị của M để đường thẳng \(\Delta\) có phương trình y=x-m cắt đồ thị hàm số tại hai điểm phân biệt \(A\left(x_1,y_1\right),B\left(x_2,y_2\right)\) thỏa mãn \(\left(x_2-x_1\right)^4+\left(y_2-y_1\right)^4=18\)
Cho phương trình:\(x^2-\left(m+2\right)x+2m=0\)
Tìm m để phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+x_2\right)^2-x_1.x_2\le5\)
cho phương trình:\(x^2-\left(2m-3\right)x+m^2-3m\)=0
a, giải phương tình với m=1
b, tìm m để phương trình trên có 2 nghiệm \(x_1,x_2\) thoả mãn
c, tìm hệ thức liên hệ giữa hai nghiệm \(x_1,x_2\)( không phụ thuộc vào m)