Cho các số x, y, z, t không âm thỏa mãn: xy + yz + zt + tx = 1. Tìm giá trị nhỏ nhất của biểu thức: \(5x^2+4y^2+5z^2+t^2\)
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
Cho x, y, z là 3 số thực dương và thoả mãn: \(4x^2+9y^2+16z^2=1\). Tìm giá trị nhỏ nhất của biểu thức: \(A=\dfrac{2x}{9y^2+16z^2}+\dfrac{3y}{4x^2+16z^2}+\dfrac{4z}{4x^2+9y^2}\)
Cho 1/x +1/y+1/z=0, tính giá trị biểu thức A= yz/x^2+ xz/y^2+xy/z^2
Ai biết bài này giải hộ mình với
a) Rút gọn biểu thức A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
b) Cho x,y,z thỏa mãn: xy+yz+xz=1
Hãy tính giá trị biểu thức:A=\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)Cảm ơn
Cho x,y,z >0 thỏa mãn điều kiện
\(xy+yz+zx=xyz\). Tìm GTNN của biểu thức P=\(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}+6\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)
1. Giải phương trình:
a) x2 - 2x = 2\(\sqrt{2x-1}\)
b) 2(x2 + 2) = 5\(\sqrt{x^2+1}\)
c) x2 + 3x + 1 = (x+3)\(\sqrt{x^2+1}\)
2. Cho x,y,z>=0 thỏa mãn điều kiện x+y+z=a
a) Tìm GTLN của biểu thức A=xy+yz+xz
b) Tìm GTNN của biểu thức B=x2 + y2 + z2
3. Cho 0<x<1, tìm GTNN của B=\(\dfrac{3}{1-x}+\dfrac{4}{x}\)
Bài 1. Chứng minh rằng với mọi x và y ta luôn có: \(\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}\ge x+2y\)
Bài 2. Cho x, y, z là các số thực tuỳ ý. Chứng minh rằng:
\(\sqrt{x^2+xy+y^2}\sqrt{y^2+yz+z^2}\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\)
Bài 3. Cho x, y, z là các số thực dương thoả mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{2x^2+xy+2y^2}\sqrt{2y^2+yz+2z^2}\sqrt{2z^2+zx+2x^2}\)
Bài 3. Cho x, y, z là các số thực không âm thoả mãn x+y+z=3. Tìm giá trị nhỏ nhất của biểu thức: \(A=\sqrt{2x^2+3xy+2y^2}\sqrt{2y^2+3yz+2z^2}\sqrt{2z^2+3zx+2x^2}\)
Cho 3 số dương x; y; z thỏa mãn xyz = 1.
Tính giá trị của biểu thức
M = \(\dfrac{x+2xy+1}{x+xy+xz+1}+\dfrac{y+2yz+1}{y+yz+yx+1}+\dfrac{z+2zx+1}{z+zx+z+1}\)