Đặt \(x+y=t,t\in\left[-2;2\right]\)
Biến đổi được \(P=-2t^3+6t\)
Xét \(f\left(t\right)=-2t^3+6t\) trên \(\left[-2;2\right]\)
Lập bảng biến thiên
Ta có \(P_{Max}=4\) khi t=1
\(P_{Min}=-4\) khi t= -1
Đặt \(x+y=t,t\in\left[-2;2\right]\)
Biến đổi được \(P=-2t^3+6t\)
Xét \(f\left(t\right)=-2t^3+6t\) trên \(\left[-2;2\right]\)
Lập bảng biến thiên
Ta có \(P_{Max}=4\) khi t=1
\(P_{Min}=-4\) khi t= -1
Cho x, y là các số thực thỏa mãn điều kiện x2 + y2= 1 .Tìm giá trị nhỏ nhất của biểu thức P = (3-x) χ (3-y)
( có thể dùng BĐT Bunhia copxki)
Cho x,y thõa x^2+y^2-xy=1. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P=x^4+y^4-x^2y^2.
Cho 2 số thực \(x,y\) thỏa \(2y^3+7y+2x\sqrt{1-x}=3\sqrt{1-x}+3\left(2y^2+1\right)\). Tìm giá trị lớn nhất của biểu thức \(P=x+2y\).
Cho x,y là hai số thực thỏa mãn điều kiện \(x^2+y^2+xy+4=4y+3x\) . Tìm giá trị lớn nhất của biểu thức \(P=3\left(x^3-y^3\right)+20x^2+2xy+5y^2+39x\).
Cho 2 số dương x,y thỏa mãn xy=1.Tìm giá trị nhỏ nhất của biểu thức:
M=x^3/1+y + y^3/1+x
Cho hai số thực \(x\ne0,y\ne0\) thay đổi và thỏa mãn điều kiện \(\left(x+y\right)xy=x^2+y^2-xy\). Giá trị lớn nhất M của biểu thức \(A=\frac{1}{x^3}+\frac{1}{y^3}\) là:
Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
\(y=x^3-3x^2-9x+35\) trên các đoạn [-4; 4] và [0;5] ;
Cho các số thực x,y với \(x\ge0\) thỏa mãn \(5^{x+3y}+5^{xy+1}+x\left(y+1\right)+1=5^{-xy-1}+\frac{1}{5^{x+3y}}-3y\) . Gọi m là giá trị nhỏ nhất của biểu thức T=x =2y +1. Tìm m?
1. Tìm max:y= sinx - \(\sqrt{3}\)cosx
2. Tìm max y= cos2x+3sin2x+2sinx
3. Cho 2 số thực x,y thỏa mãn (x-y+1)2+5(x-y+1)+(x-1)2+6. Đặt P= 3y-3x-(x-1)2. Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất. Tính M+m.