rút gọn biểu thức
\(A_8=\left(1-\frac{1}{x+2}\right):\left(\frac{4-x^2}{x-6}-\frac{x-2}{3-x}-\frac{x-3}{x+2}\right)\)
\(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2\left(x+y\right)}-\frac{2x^2y}{x^4-2x^2y^2+y^4}+\frac{x^2}{\left(y^2-x^2\right)\left(x+y\right)}\right]\)
Bài 1:
a) 7x –12 = 5x + 3
b) 2(3x –5) –7(x + 1) = 2
c) (1 –3x)^2= (4x –3)^2
d) (2x + 3)(4x –2) –2(2x + 1)^2= 12
Bài 2:
Cho biểu thứcA = (5x –3y + 1)(7x + 2y –2)
a) Tìm x sao cho với y = 2 thì A = 0
b) Tìm y sao cho với x = -2 thì A = 0
Cho biểu thức hai biến f(x,y) =(2x−2y+2)(3x+3y−4) Tìm các giá trị của y sao cho phương trình (ẩn x) f(x,y)=0 nhận x=1 làm nghiệm.
cho x,y >0 .CMR: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3(\(\dfrac{x}{y}+\dfrac{y}{x}\))
Cho x, y, z khac 0 thoa man 1/x + 1/y + 1/z = 0. Tinh P = \(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}\)
Tìm giá trị lớn nhất của biểu thức:
A= -2x2 +5x-8
B= -x2-y2 + xy+2x+2y
C= \(\frac{3}{4x^2-4x+5}\)
D=\(\frac{x^2-6x+14}{x^2-6x+12}\)
cho x, y, z, c khác 0 và x-y-z=a và x^2+y^2+z^2=b và 1/x-1/y-1/z.tính p=yz-zx-xy
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\).Tính giá trị của biểu thức \(A=\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)
giải phương trình, tiếp
\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\)
\(\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(4\left(2x+7\right)^2=9\left(x+3\right)^2\)
\(\frac{1}{9}\left(x-3\right)^2-\frac{1}{25}\left(x+5\right)^2=0\)
\(2x^2-6x+1=0\)
\(3x^2+12x-66=0\)
\(9x^2-30x+225=0\)
\(3x^2-7x+1=0\)
\(3x^2-7x+8=0\)
\(x^2-4x+1=0\)
\(2x^2-6x+1=0\)