3) \(\frac{1-x}{x+1}-\frac{3+2x}{x+1}=0\)
13) \(\frac{x+2}{x}-\frac{x^2+5x+4}{x\left(x+2\right)}=\frac{x}{x+2}\)
14) \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{20}{\left(x+1\right)\left(2-x\right)}\)
16) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
17) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
18) \(\frac{x-1}{x}+\frac{1}{x+1}=\frac{2x-1}{2x^2+2}\)
19) \(\frac{2}{x+1}-\frac{3x+1}{\left(x+1\right)}=\frac{1}{\left(x+1\right)\left(x-2\right)}\)
20) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
Bµi 5: Gi¶i PT sau.
\(a,\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
b,\(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
d) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
e) x4 + 2x3 + 4x2 + 2x + 1 = 0
\(f,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
giải phương trình
a) \(\frac{4x-8}{2x^2+1}=0\)
b)\(\frac{x^2-x-6}{x-3}=0\)
c)\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
d)\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
bài 1: thực hiên phép tính
a, \(\frac{x^2}{x^2-x}\)- \(\frac{x^2}{x+1}\)-\(\frac{2x}{x^2-1}\)
b, \(\frac{4x^2-3x+5}{x^3-1}\)- \(\frac{1-2x}{x^2+x+1}\)- \(\frac{6}{x-1}\)
c, \(\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
d, \(\frac{5}{x+1}-\frac{10}{x-x^2-1}-\frac{15}{x^3+1}\)
bài 2: thực hiện phép tính
a, \(\frac{1}{x+1}-\frac{2x}{x-1}+\frac{x+3}{x^2-1}\)
b, \(\frac{2}{2x+1}-\frac{1}{2x-1}+\frac{2}{4x^2-1}\)
c, \(\frac{7}{8x^2-18}+\frac{1}{2x^2+3x}-\frac{1}{4x-6}\)
d, \(\frac{3x^2+5x+14}{x^3+1}+\frac{x-1}{x^2-x+1}-\frac{4}{x+1}\)
a) (x-5).(x-1) > 0
b) (2x-3).(x+1) < 0
c) \(2x^2-3x+1>0\)
d) \(\frac{3x-2}{x-2}>0\)
e) \(\frac{3x-1}{2x-3}< \frac{3}{2}\)
f) \(\frac{x-5}{x^2+1}< 0\)
g) \(\frac{2x-1}{5x-1}< \frac{2}{5}\)
Bài 1 :Thực hiện phép tính
a, \(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
b\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
c, \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}\)
d,\(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}\)
Bài 2: Thực hiện phép tính
a,\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
b,\(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
c,\(\frac{x+3}{x^2+1}-\frac{1}{x^2+2}\)
e,\(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)
d,\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
f,\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
giải pt
1,\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
2,\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
3,\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)
4,\(\frac{2x}{x-1}+\frac{4}{x^2+2x-3=}=\frac{2x-5}{x+3}\)
5,\(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{x^2+x-2}\)
6,\(\frac{x+3}{x-4}+\frac{x-1}{x-2}=\frac{2}{6x-8-x^2}\)
7,\(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{1-x^2}\)
Giải PT:
a)3-4x(25-2x)=8x\(^2\)+x-30
b)(2x+1)(3x-2)=(5x-8)(2x+1)
c)\(\frac{x}{2x+1}+\frac{x+1}{2x+3}=\frac{x+1}{2x+1}+\frac{x-1}{2x+3}\)
d)||x+1|-1|=5
Bài 1: Giải các phương trình sau:
a) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
b) \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
Bài 2: Giải các phương trình sau:
a) \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
b) \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}-6}{5}\)