Ta có:
\(x_1+x_2+x_3+...+x_{49}+x_{50}+x_{51}=0\)
\(\Rightarrow\left(x_1+x_2\right)+\left(x_3+x_4\right)+...+\left(x_{49}+x_{50}\right)+x_{51}=0\)
\(\Rightarrow1+1+...+1+x_{51}=0\)
Từ \(x_1\) đến \(x_{50}\)có 50 số:
Vậy có số số 1 là:
\(\frac{50}{2}=25\) (số 1)
\(\Rightarrow25+x_{51}=0\)
\(\Rightarrow x_{51}=0-25\)
\(\Rightarrow x_{51}=-25\)
Vậy \(x_{51}=-25\)