Cho:
X = {-4; -2; -1; 0; \(\dfrac{1}{2}\); 3}
Y = {-12; -3; 0; -\(\dfrac{3}{2}\); -9; 6; 3; 12}
f là hàm số từ X đến Y được xác định bởi công thức y = f(x) = -3x. Hãy lập bảng giá trị tương ứng giữa x và y.
Cho hàm số y = (a - 2)x + a
a) Xác định a để đồ thị hàm số cắt trục tung tại điểm có tung độ = 2.
b) Xác định giá trị của a để đồ thị hàm số cắt trục hoành tại điểm có hoành độ = -1.
c) Vẽ đồ thi của 2 hàm số ứng với giá trị của a tìm được ở câu a, b trên cùng hệ trực tọa độ Oxy. Và tìm tọa độ giao điểm của 2 đường thẳng vừa vẽ được.
Tìm tập xác định của các hàm số sau:
a) y = -2x + 3
b) y = 2x2 - 3x + 1
c) y = \(\dfrac{x}{x^2-1}\)
d) y = \(\sqrt{1-x}\)
Cho các số thực a, b, c, d thỏa mãn ( 2x – 1)4 = ( ax + b)4 + ( x2 + cx + d)2 với mọi giá trị của x là số thực. Tìm giá trị của biểu thức P = a + 2b + 3c + 4d.
Cho P= \(\dfrac{x+2}{x\sqrt{x}+1}\)+\(\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}\)- \(\dfrac{\sqrt{x}-1}{x-1}\)
a, Rút gọn
b, Tìm Min P
c, Cmr với những giá trị của x để P xác định thì P< 1
Mn ơi giúp mình với, giúp từ phần b á. Phần a mình ra kq là \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)rồi ạ.
Cảm ơn nhiều nhiều mấy bạn nào giúp đc nha
A= \(A=-\dfrac{x}{4-x}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\) với x lớn hơn hoặc bằng 0; x khác 4
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
a. Rút gọn A
b. Tính giá trị của A khi x=36
c. Tìm x để a=-1/3
d. tìm x nguyên để biểu thức A có giá trị nguyên
e. Tìm x để A:B =-2
F. Tìm x để A đạt giá trị nhỏ nhất, tính giá trị nhỏ nhất
mn giúp mình với ạ mình đang cần gấp mình cảm ơn
Chứng minh :
\(x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4};x>0\)
Từ đó, cho biết biểu thức \(\dfrac{1}{x-\sqrt{x}+1}\) có giá trị lớn nhất là bao nhiêu ?
Giá trị đó đạt được khi \(x\) bằng bao nhiêu ?
cho y=fx=\(\dfrac{2}{x+1}.\)biến số x có thể là giá trị nào
Cho biểu thức
a) Tìm tập xác định của biểu thức A và rút gọn biểu thức A
b) Chứng minh A > 0 với mọi x khác 1
c) Tìm x để A đạt giá trị lớn nhất . Tìm GTLN đó
A = \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)