cho đường tròn tâm O, điểm A cố định trên đường tròn và một điểm B di chuyển trên đường tròn. các tiếp tuyến tại A và B cắt nhau tại C. gọi K là giao điểm của AB và OC.
a) tìm tập hợp các điểm K.
b) tìm tập hợp các trực tâm H của tam giác ABC.
Cho hai điểm phân biệt B và C cố định trên đường tròn tâm O bán kính O, điểm A di động trên đường tròn O. CMR khi A di động trên đường tròn O thì trực tâm của tam giác ABO di động trên một đường tròn.
Cho hình bình hành ABCD, hai điểm A, B cố định, tâm I di động trên đường tròn (C). Khi đó quỹ tích trung điểm M của cạnh BC:
Cho đường tròn (O; R), đường kính AB cố định và đường kính CD thay đổi. Tiếp tuyến với đường tròn (O) tại B cắt AC tại E, AD tại F. Tìm tập hợp trực tâm các tam giác CEF và DEF
Cho hai đường tròn (O; R), (O' R') và một đường thẳng Δ cố định. Hãy dựng theo một
đường thẳng d có phương song song với Δ sao cho (O) và (O') chắn trên d hai dây bằng nhau
MN và PQ.
cho hình bình hành ABCD , hai đỉnh A,B cố định, tâm I thay đổi di động trên đường tròn (c) . tìm tập hợp trung điểm M của cạnh BC
Cho hình bình hành ABCD . A, B là 2 điểm cố định , C di chuyển trên đường thẳng d. Tìm tập hợp (quỹ tích) điểm D
( giải chi tiết giúp e nhé)
Bài 1: Cho hình vuông ABCD tâm I. Gọi M,N lần lượt là trung điểm của AD, DC.Tìm phép tịnh tiến biến \(\Delta AMI\) thành \(\Delta MDN\).
Bài 2: Cho hình bình hành ABCD. Trình bày các phép tình tiến biến đường thẳng AB thành đường thẳng CD và biến đường thẳng AD thành đường thẳng BC.
Bài 3: Trong mặt phẳng tọa độ Oxy, cho \(\Delta ABC\) biết A(2;4), B(5;1), C(-1;-2). Phép tình tiến theo véctơ \(\overrightarrow{BC}\) biến \(\Delta ABC\) thành \(\Delta A'B'C'\) tương ứng các điểm. Tìm tọa độ trọng tâm G' của \(\Delta A'B'C'\).
Cho đường tròn tâm O bán kính R và 2 điểm phân biệt C, D nằm ngoài đường tròn . Hãy dựng dây cung AB của đường tròn sao cho ABCD là hình bình hành