cho đường tròn tâm O, điểm A cố định trên đường tròn và một điểm B di chuyển trên đường tròn. các tiếp tuyến tại A và B cắt nhau tại C. gọi K là giao điểm của AB và OC.
a) tìm tập hợp các điểm K.
b) tìm tập hợp các trực tâm H của tam giác ABC.
Cho hai điểm phân biệt B và C cố định trên đường tròn tâm O bán kính O, điểm A di động trên đường tròn O. CMR khi A di động trên đường tròn O thì trực tâm của tam giác ABO di động trên một đường tròn.
Trong mặt phẳng Oxy cho điểm M(3;5) , đường thẳng d:3x+2y-4=0 và đường tròn c:x^2+y^2-2x+4y-4=0
a. Tìm ảnh của điểm M và đường thẳng d qua phép tịnh tiến theo vectơ = (2;1)
b. Tìm ảnh của đường tròn (C) qua phép quay tâm O góc quay 90 độ (O là gốc tọa độ).
Cho vòng tròn cố định (O,R) , dây cung cố định AB. M di động trên (O). Gọi H là trực tâm tam giác MAB, I là trung điểm AB. Dựng hình vuông theo chiều dương lượng giác MHNK. Tìm quỹ tích N, giao điểm J của 2 đường chéo MN và HK.
Cho hình bình hành ABCD, hai điểm A, B cố định, tâm I di động trên đường tròn (C). Khi đó quỹ tích trung điểm M của cạnh BC:
Cho hai đường tròn (O; R), (O' R') và một đường thẳng Δ cố định. Hãy dựng theo một
đường thẳng d có phương song song với Δ sao cho (O) và (O') chắn trên d hai dây bằng nhau
MN và PQ.
cho hình bình hành ABCD , hai đỉnh A,B cố định, tâm I thay đổi di động trên đường tròn (c) . tìm tập hợp trung điểm M của cạnh BC
Bài 1: Cho hình vuông ABCD tâm I. Gọi M,N lần lượt là trung điểm của AD, DC.Tìm phép tịnh tiến biến \(\Delta AMI\) thành \(\Delta MDN\).
Bài 2: Cho hình bình hành ABCD. Trình bày các phép tình tiến biến đường thẳng AB thành đường thẳng CD và biến đường thẳng AD thành đường thẳng BC.
Bài 3: Trong mặt phẳng tọa độ Oxy, cho \(\Delta ABC\) biết A(2;4), B(5;1), C(-1;-2). Phép tình tiến theo véctơ \(\overrightarrow{BC}\) biến \(\Delta ABC\) thành \(\Delta A'B'C'\) tương ứng các điểm. Tìm tọa độ trọng tâm G' của \(\Delta A'B'C'\).
Tìm ảnh của đường thẳng d qua phép tịnh tiến theo \(\overrightarrow{v}\)(2;2) biết d cắt Ox, Oy lần lượt tại A(-1;0) và B(0;5)