Trong mp (ABCD), nối EF lần lượt cắt BC và AD tại P và Q
\(\Rightarrow\left\{{}\begin{matrix}SP=\left(SEF\right)\cap\left(SBC\right)\\SQ=\left(SEF\right)\cap\left(SAD\right)\end{matrix}\right.\)
Trong mp (ABCD), nối EF lần lượt cắt BC và AD tại P và Q
\(\Rightarrow\left\{{}\begin{matrix}SP=\left(SEF\right)\cap\left(SBC\right)\\SQ=\left(SEF\right)\cap\left(SAD\right)\end{matrix}\right.\)
Cho tứ giác ABCD nằm trong mp(a) và điểm S không thuộc (a). AB cắt CD tại E và AC cắt BD tại F. Tìm giao tuyến của ( SEF) với các mp (SAD) và (SBC)
cho tứ giác ABCD nằm trong mp (a) và điểm S không thuộc (a). Trên SD lấy N. Xác định giao tuyến của mp (BCN) với các mp (SAB), (SAD)
Cho hình chóp SABCD,đáy ABCD là tứ giác có AB cắt CD tại E ,AC cắt BD tại S
a,Tìm (SAB) giao (SCD) và (SAC) giao (SBD)
b,Tìm giao tuyến (SEF) với các mặt phẳng (SAD) và (SBC)
Cho hình bình hành ABCD nằm trong mp (P) và một điểm S nằm ngoài mp(P). Gọi M là điểm nằm giữa S và A ; N là điểm nằm giữa S và B; Giao điểm của hai đường thẳng AC và BD là O.
a) Tìm giao điểm của mp(CMN) với đường thẳng SO
b) Xác định giao tuyến của hai mặt phẳng (SAD) và (CMN)
Cho hình bình hành ABCD nằm trong mặt phẳng (a) và điểm S không thuộc (a). Gọi M, P lần lượt là trung điểm của SA, BC. N là điểm trên cạnh SB sao cho BN=1/4BS. Xác định giao tuyến của mp (MNP) với các mp: a, (ABCD) b, (SAD) c, (SCD)
Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J tương ứng là hai điểm trên cạnh BC và BD sao cho IJ không song song với CD
a) Hãy xác định giao tuyến của hai mặt phẳng (IJM) và (ACD)
b) Lấy N là điểm thuộc miền trong của tam giác ABD sao cho JN cắt đoạn AB tại L. Tìm giao tuyến của hai mặt phẳng (MNJ) và (ABC)
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD, trên cạnh AD lấy điểm P không trùng với trung điểm của AD.
a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)
b) Tìm giao điểm của mặt phẳng (PMN) và BC
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, N lần lượt là trung điểm của các đoạn thẳng SA, AC và P là điểm nằm trên cạnh AB sao choBP = 3AP.a) Tìm giao tuyến của hai mặt phẳng (MNP) và (SBC).b) Gọi E, F là hai điểm nằm trong hai tam giác SAD và SBC. Tìm giao điểm củađường thẳng EF với mặt phẳng (MNP).
cứu mình với mai thi rồi :((
Cho tứ diện ABCD. Lấy điểm M trên cạnh AB và điểm N trên cạnh AC sao cho đường thẳng MN cắt đường thẳng BC tại E. Gọi O là điểm trong tam giác BCD
a) Tìm giao tuyến 2 mp (OMN) và (BCD)
b Tìm giao tuyến 2 mp (OMN) và (ACD)