a.
Trong mp (SAB), nối MN kéo dài cắt AB tại E
\(\Rightarrow\left\{{}\begin{matrix}E\in\left(MNP\right)\\E\in\left(ABCD\right)\end{matrix}\right.\)
Mặt khác theo giả thiết \(\left\{{}\begin{matrix}P\in\left(ABCD\right)\\P\in\left(MNP\right)\end{matrix}\right.\)
\(\Rightarrow EP=\left(MNP\right)\cap\left(ABCD\right)\)
b.
Theo giả thiết: \(\left\{{}\begin{matrix}M\in\left(MNP\right)\\M\in SA\Rightarrow M\in\left(SAD\right)\end{matrix}\right.\)
Trong mp (ABCD), nối EP kéo dài cắt AD tại F
\(\Rightarrow\left\{{}\begin{matrix}F\in\left(MNP\right)\\F\in\left(SAD\right)\end{matrix}\right.\)
\(\Rightarrow MF=\left(MNP\right)\cap\left(ABCD\right)\)
c.
Trong mp (SBC), nối NP kéo dài cắt SC tại H
\(\Rightarrow\left\{{}\begin{matrix}H\in\left(MNP\right)\\H\in\left(SCD\right)\end{matrix}\right.\)
Gọi giao điểm của EP và CD tại K
\(\Rightarrow HK=\left(MNP\right)\cap\left(SCD\right)\)