Hình học lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thị Kim Dung

Cho tứ giác ABCD. Gọi O là giao điểm của 2 đường chéo ( không vuông góc), I và K lần lượt là trung điểm của BC và CD. Gọi M và N theo thứ tự là điểm đối xứng của điểm O qua tâm I và K.

a) Chứng minh rằng tứ giác BMND là hình bình hành.

b) Với điều kiện nào của hai đường chéo AC và BD thì tứ giác BMND là hình chữ nhật.

c) Chứng minh 3 điểm M, C, N thẳng hàng.

Hắc Hường
11 tháng 6 2018 lúc 9:52

Hình:

Ôn tập cuối năm phần số học

Giải:

a) Ta có:

\(\left\{{}\begin{matrix}BH=HC\\MH=HO\end{matrix}\right.\)

Nên tứ giác BMCO là hình bình hành

\(\Rightarrow\left\{{}\begin{matrix}BM//OC\\BM=OC\end{matrix}\right.\left(1\right)\)

Tương tự, tứ giác OCND là hình bình hành

\(\Rightarrow\left\{{}\begin{matrix}DN//OC\\DN=OC\end{matrix}\right.\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\left\{{}\begin{matrix}BM//DN\\BM=OC=DN\end{matrix}\right.\)

Suy ra tứ giác BMND là hình bình hành

b) Để hình bình hành BMND trở thành hình chũ nhật thì BM⊥BD

Đồng thời BM//AC

Nên AC⊥BD

c) Vì BMCO là hình bình hành nên MC//BD (3)

Và BMND là hình bình hành nên MN//BD (4)

Từ (3) và (4), suy ra M,N,C thẳng hàng (theo tiên đề Ơ-clit)

Vậy ...


Các câu hỏi tương tự
Phương Nhi
Xem chi tiết
Nguyễn Thị Huyền
Xem chi tiết
Duyên Lương
Xem chi tiết
Nguyễn Thị Ngọc Ngân
Xem chi tiết
Ngoc Anh
Xem chi tiết
Ngoc Anh
Xem chi tiết
Ngoc Anh
Xem chi tiết
Ngọc Thành
Xem chi tiết
Phương Nguyễn Ngọc Mai
Xem chi tiết