Cho tứ giác ABCD có hai đườn chéo AC và BD vuông góc nhau. Gọi E,F,G,H lần lượt là trung điểm AB,BC,CD,DA
a)Cm E,F,G,H cùng thuộc một đường tròn
b)Giả sử AC bằng 24cm,BD bằng 18cm. Tính bán kính đường tròn đi qua bốn điểm E,F,G,H
Cho tam giác ABC có đường cao AD và trực tâm H. Gọi I, K lần lượt là trung điểm của HA, HB. Gọi E, F lần lượt là trung điểm của BC, AC. Chứng minh:
a, Bốn điểm E, F, I, K cùng thuộc một đường tròn
b, Điểm D cũng thuộc đường tròn đi qua bốn điểm E, I, F, K
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Cho tứ giác ABCD .
Có 2 đường chéo AC vuông góc với BD .
Gọi M,N,R,S lần lượt là trung điểm các cạnh AB,BC,CD,AD .
a) CMR: 4 điểm M,N,R,S thuộc cùng 1 đường tròn .
b) AC=24cm , BD=18cm .
Tính bán kính đường tròn ở câu (a) .
Bài 1: Cho tam giác ABC có cạnh BC cố định. Đường trung tuyến BM = 1cm. Hỏi điểm A di động trên đường nào?
Bài 2: Cho hình vuông ABCD. Trên tia đối Ct của CB lấy điểm M, AM cắt CD tại N, BN cắt AD tại P.
a) Chứng minh hai tam giác CNM và DNA đồng dạng
b) Chứng minh: CM.DP=\(AB^2\)
c) Gọi I là giao điểm của CP và DM. Khi M di động trên tia Ct thì I di động trên đường nào
Bài 3: Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M,N,H,K lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Chứng minh bốn điểm M,N,H,K cùng thuộc một đường tròn.
b) Tính bán kính của đường tròn đó khi biết AC=12cm, BD=16cm
Bài 4: Cho tam giác ABC vuông tại C, \(\widehat{A}=30^0\). Lấy điểm E thuộc cạnh BC. Qua B kẻ đường thẳng vuông góc với AE tại I cắt AC tại K.
a) Tính góc CIK
b) Chứng minh KA.KC = KB.KI, \(AC^2\)=AI.AE-AC.CK
c) Gọi H là giao điểm của AB và đường tròn đường kính AK. Chứng minh H,E,K thẳng hàng
d) Điểm I di động trên đường nào
Bài 5: Cho hình vuông ABCD, E và F lần lượt là hai điểm di động trên BC và CD sao cho \(\widehat{FAE}=45^0\). Kẻ AH vuông góc với EF.
a) Chứng minh H thuộc một đường tròn cố định
b) Xác định vị trí của E,F để diện tích tam giác CEF đạt giá trị lớn nhất
Bài 6: Cho tam giác ABC nhọn nội tiếp đường tròn (O) đướng kính AD. Gọi H là giao điểm của hai đường chéo BE và CF của tam giác ABC.
a) Chứng minh tứ giác BHCD là hình bình hành
b) Gọi I là trung điểm của BC. Chứng minh AH=2OI
c) Gọi G là trong tâm của tam giác ABC. Chứng minh G cũng là trọng tâm của tam giác AHD
Bài 8: Cho hình thoi ABCD. Gọi M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA.
a) Chứng minh 4 điểm M,N,P,Q cúng thuộc một đường tròn (O)
b) Tím điều kiện của hình thoi ABCD để các đỉnh B,D cũng thuộc đường tròn (O)
c) Trên cạnh AB,BC lấy các điểm E,F sao cho BE=BF. Gọi G là giao điểm của EO với CD, H là giao điểm của FO với DA. Chứng minh 4 điểm E,F,G,H thuộc 1 đường tròn
Bài 9: Cho tam giác ABC, I là điểm di động trên cạnh BC. Gọi D,E lần lượt là hình chiếu vuông góc của I trên AB, AC. Lấy điểm M đối xứng với A qua D, điểm N đối xứng với A qua E.
a) Chứng minh I là tâm đường tròn ngoại tiếp của tam giác AMN.
b) Chứng minh đường tròn (I) đi qua một điểm cố định.
Bài 10: Cho hình vuông ABCD, hai đường chéo cắt nhau tại O. Qua O vẽ hai đường thẳng vuông góc với nhau cắt các cạnh AB, BC, CD, DA lần ượt tại M,N,P,Q.
a) Chứng minh 4 điểm M,N,P,Q cùng thuộc một đường tròn
b) Tính bán kính của đường tròn đi qua 4 điểm M,N,P,Q biết \(\widehat{AOM}=60^0\), AB = \(2\sqrt{2}cm\)
Bài 11: Cho hình vuông ABCD cạnh bằng a. Gọi E,F là hai điểm di động trên cạnh AB, AD sao cho AE+EF+AF=2a. Gọi H là hình chiếu của C lên EF. Chứng minh H thuộc một đướng tròn cố định
Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE