Bài 1: Đại cương về đường thẳng và mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Minh Ngọc

cho tứ diện ABCD, điểm I thuộc cạnh AB, J là điểm trong tam giác BCD, K là điểm trong tam giác ACD

a) Tìm giao điểm của IK và (BCD)

b) Tìm giao tuyến của (IJK) và (ABC)

c) Tìm giao tuyến của (IJK) và các mặt phẳng còn lại của tứ diện

Akai Haruma
9 tháng 7 2020 lúc 15:41

Lởi giải:

a)

Gọi $E$ là giao $AK,CD$. Ta thấy $E\in CD\Rightarrow BE\subset (BCD)$

Gọi $M$ là giao $IK, BE$. Khi đó:

$M\in IK$. $M\in BE\Rightarrow M\in (BCD)$. Do đó $M=IK\cap (BCD)$

b)

Gọi $F$ là giao $DK,AC$, $H$ là giao $DJ, BC$

$\Rightarrow FH\subset (ABC)$. Lấy $G$ là giao điểm $FH, JK$ thì ta thấy:

$G\in FH\Rightarrow G\in (ABC)$

$G\in JK\Rightarrow G\in (IJK)$

$I\in AB\Rightarrow I\in (ABC)$

$I\in (IJK)$

$\Rightarrow GI$ là giao tuyến của $(IJK)$ và $(ABC)$

c)

Giao tuyến của $(IJK)$ và $(ACD)$

Gọi $L$ là giao $IG, AC$.

$L\in IG\Rightarrow L\in (IJK)$

$L\in AC\Rightarrow L\in (ACD)$

Mà $E\in IK\Rightarrow E\in (IJK)$

$E\in CD\Rightarrow E\in (ACD)$

Do đó $EL$ là giao tuyến của $(IJK)$ và $(ACD)$

------------------

Giao tuyến của $(IJK)$ và $(ABD)$

Gọi $P$ là giao điểm $EJ$ và $BD$
$P\in BD\Rightarrow P\in (ABD)$

$P\in EJ\Rightarrow P\in (IJK)$

$I\in (IJK)$ và $I\in (ABD)$

$\Rightarrow PI$ là giao tuyến $(ABD)$ và $(IJK)$

------------------

Giao tuyến $(IJK)$ và $(BCD)$

$E\in IK\Rightarrow E\in (IJK)$

$E\in CD\Rightarrow E\in (BCD)$

$P\in (IJK)$ và $P\in BD\Rightarrow P\in (BCD)$

Do đó $PE$ là giao tuyến $(IJK)$ và $(BCD)$

Bạn tự vẽ hình.

 

 

 

 


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thu Trang Nguyễn
Xem chi tiết
Tra My Dang Tran
Xem chi tiết
Bình Như
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Nguyễn Thùy Phương
Xem chi tiết