Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC, CD. Chứng minh rằng AM vuông góc với BP và tính thể tích của khối tứ diện CMNP
Cho tứ diện S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông góc với mặt phẳng đáy. Tính thể tích tứ diện biết đường cao AH của tam giác ABC bằng a và góc giữa mặt phẳng (SBC) và mặt phẳng (ABC) là 60 độ.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A. Mặt phẳng bên ABC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt phẳng đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SA, BC
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là H thuộc cạnh AB sao cho HA=2HB. Góc giữa 2 đường thẳng SC và mặt phẳng (ABC) bằng 60 độ. Tính thể tích khối chóp A.ABC và tính khoảng cách giữa 2 đường thẳng SA và BC theo a
Cho hình trụ tam giác ABC.A'B'C' có BB'=a, góc giữa đường thẳng BB' và mặt phẳng (ABC) bằng 60 độ; tam giác ABC vuông tại C và góc BAC bằng 60 độ. Hình chiếu vuông góc của B' lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Tính thể tích của khối tứ diện A'ABC theo a
cho hinh chóp SABC có đáy ABC đều cạnh a,tam giác SAC cân tại S ,mp(SAC) vuông góc với đáy,góc giữa SB và mặt phẳng (ABC) bằng 60,M là trung điểm BC tính d(SM,AC)
Cho hình chóp S.ABCD có đáy \ABCD là hình vuông cạnh a, cạnh SA vuông góc với đáy và SA = a. Gọi M, N lần lượt là trung điểm của các cạnh AD và SC.
1. Tính thể tích khối tứ diện MNBD.
2. Tính khoảng cách từ điểm D đến mặt phẳng (MNB).
cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tm iacs ABC đều, hình chiếu vuông góc cúa đỉnh S trên mặt phẳng ABCD trùng với trọng tâm tam giác ABc. Góc giữa đường thẳng SD với mp ABCD bằng 30. Tính khoảng cách từ B đến mặt phẳng (SCD) theo a
cho hình chóp tứ giác đều S ABCD có đáy ABCD là hình vuông cạnh a các mặt bên tạo với mặt đáy một góc bằng 60. tính thể tích khối chóp SABCD