B1: Cho \(\frac{\overline{abc}}{a+\overline{bc}}=\frac{\overline{bca}}{b+\overline{ca}}\)
C/m: \(\frac{a}{\overline{bc}}=\frac{b}{\overline{ca}}\)
B2: Cho \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\). C/m a = b = c
B3: Cho \(\left(a+b+c+d\right)\left(a-b-c-d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\). C/m 4 số a; b; c; d lập thành 1 tỉ lệ thức
Cho \(c\ne0\) và \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\). Chứng minh rằng : \(\frac{a}{b}=\frac{b}{c}\).( \(\overline{ab}\) và \(\overline{bc}\) số có 2 chữ số )
a, Tìm số tự nhiên \(n\) , chữ số a sao cho : \(1+2+3+...+n=\overline{aaa}\) ( \(\overline{aaa}\) là số có 3 chữ số )
b, Tìm \(x;y;z\) biết \(\frac{x}{y}=\frac{3}{2};5z=7z\) và \(x-2y+z=32\)
c, Cho \(c\ne0\) và \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\) . Chứng minh rằng : \(\frac{a}{b}=\frac{b}{c}.\) ( \(\overline{ab}\) và \(\overline{bc}\) là số có hai chữ số )
Câu 1: Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\). Chứng minh rằng ta có tỉ lệ thức \(\left(\frac{a+b}{c+d}\right)^2\)= \(\frac{a^2+b^2}{c^2+d^2}\).
Câu 2: Tìm x nguyên dương để ( 2x-31 )⋮( 2x-1 ).
Câu 3: Tìm giá trị nhỏ nhất của biểu thức B= 2\(\left(x-2y\right)^{2016}\)+3\(\left|y+\frac{1}{2}\right|-2015\).
Câu 4: Tìm các chữ số a, b, c, d biết \(\overline{abcd}\cdot9\)\(\)\(=\overline{dcba}\).
Giải nhanh hộ mok nhé
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
cmr \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Cho tỉ lệ thức \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}.\)CMR \(\dfrac{\overline{abbbb...bbb}}{\overline{bbbb...bbbc}}=\dfrac{a}{c}\)( có n chữ số b; n là số tự nhiên)
Cho tỉ lệ thức \(\dfrac{\overline{ab}}{\overline{bc}}\) = \(\dfrac{b}{c}\) (c\(\ne\) 0). Chứng minh rằng \(\dfrac{a^2+b^2}{b^2+c^2}\) = \(\dfrac{a}{c}\)
cho tỉ lệ thức : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)
Cho tỉ lệ thức \(\frac{ab}{a+b}=\frac{bc}{b+c}\). CM tỉ lệ thức \(\frac{a}{b}=\frac{b}{c}\) với giả thiết c khác 0