Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Xét \(VT=\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\dfrac{b}{d}\right)^2\left(1\right)\)
Xét \(VP=\dfrac{2a^2+3b^2}{2c^2+3d^2}=\dfrac{2\left(bk\right)^2+3b^2}{2\left(dk\right)^2+3d^2}=\dfrac{2b^2k^2+3b^2}{2d^2k^2+3d^2}\)
\(=\dfrac{b^2\left(2k^2+3\right)}{d^2\left(2k^2+3\right)}=\dfrac{b^2}{d^2}=\left(\dfrac{b}{d}\right)^2\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM
đặt a/b=c/d=k =>a=bk;c=dk thay vào 2 vế r` rút gọn