Trên tia đối của AM lấy D sao cho AM = MD
Xét \(\Delta ABM;\Delta ACD\) có :
\(\left\{{}\begin{matrix}MB=MC\\\widehat{BMA}=\widehat{DMC}\\AM=MD\end{matrix}\right.\)
\(\Leftrightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)
\(\Leftrightarrow CD=AB\)
\(\Leftrightarrow\widehat{BAM}=\widehat{MDC}\)
Mà \(AB< AC\)
\(\Leftrightarrow CD< AC\)
\(\Leftrightarrow\widehat{MAC}< \widehat{ADC}\)
Mà \(\widehat{ADC}=\widehat{BAM}\)
\(\Leftrightarrow\widehat{MAC}< \widehat{BAM}\)\(\left(1\right)\)
Xét \(\Delta ABC\) có : \(AB< AC\)
\(\Leftrightarrow\widehat{ACB}< \widehat{ABC}\)\(\left(2\right)\)
Xét \(\Delta ABM\) có : \(\widehat{B}+\widehat{BAM}+\widehat{BMA}=180^0\)
Xét \(\Delta CMA\) có : \(\widehat{MAC}+\widehat{AMC}+\widehat{MCA}=180^0\)
\(\Leftrightarrow\widehat{AMB}< \widehat{AMC}\)