\(\dfrac{DB}{DE}=\dfrac{a\sqrt{2}}{a}=\sqrt{2}\)
\(\dfrac{DC}{DB}=\dfrac{2a}{\sqrt{2}a}=\sqrt{2}\)
Do đó: DB/DE=DC/DB
Xét ΔDBC và ΔDEB có
DB/DE=DC/DB
góc D chung
Do đó: ΔDBC đồng dạng với ΔDEB
\(\dfrac{DB}{DE}=\dfrac{a\sqrt{2}}{a}=\sqrt{2}\)
\(\dfrac{DC}{DB}=\dfrac{2a}{\sqrt{2}a}=\sqrt{2}\)
Do đó: DB/DE=DC/DB
Xét ΔDBC và ΔDEB có
DB/DE=DC/DB
góc D chung
Do đó: ΔDBC đồng dạng với ΔDEB
Cho tam giác ABC vuông tại A có AB = 1cm, AC = 3cm. Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC.
a) Tính độ dài BD.
b) Chứng minh tam giác BDE đồng dạng với tam giác CDB.
c) Tính \(\widehat{DEB}+\widehat{DCB}\)
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
Cho tam giác abc vuông tại a Biết ab=3cm; ac=4cm. AD là đường phân giác của a a) Tính bc,db,dc,db/dc b) kẻ ah vuông góc với bc. C/m tam giác AHB đồng dạng với CHA. Giúp mik với mai mik thi rùi :(((
Cho tam giác ABC vuông tại A,AB = 6cm,AC=8cm.Vẽ đường cao AH và phân giác AD,HD thuộc BC. a)Tính DB,DC b) Chứng minh tam giác ABC đồng dạng với tam giác AHB c) Chứng minh AB bình=BH.BC d)Tính BH,HC Vẽ hình giúp em luôn với ạ .Thanks
Câu 7: Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giácgóc A, .
a. Tính ?
b. Tính BC, từ đó tính DB, DC làm tròn kết quả 2 chữ số thập phân.
Câu 8: Cho tam giác DEF vuông tại D, DE = 8dm, DF = 6dm, DK là tia phân giácgóc D, .
a. Tính ?
b. Tính EF, từ đó tính KE, KF làm tròn kết quả 2 chữ số thập phân.
Câu 9: Cho tam giác ABC vuông tại A có AB = 5cm, AC = 12cm, đường cao AH(H BC). Tia phân giác của góc ABC cắt AH tại E và cắt AC tại F.
Tính độ dài BC, AF, FC. (Làm tròn kết quả đến chữ số thập phân thứ nhất )
Cho HCN ABCD có AB=8cm,BC=6cm.Qua D kẻ đg thẳng m vuông góc với DB cắt BC tại E.Kẻ CH vuông góc với DE tại H.
a) Chứng minh tam giác BDE đồng dạng với tam giác DCE
b) CM DC^2=CH.DB
c) Gọi giao điểm của 2 đường chéo hcn ABCD là O.Hai đường OE vàHC cắt nhau tại I.CM I là trung điểm của HC và tính S ECH/S EBD
d) CM 3 đường thẳng OE,DC,BH đồng quy
Cho tam giác ABC vuông tại A vẽ đường cao AH có AB=6cm,AC=8cm
a) chứng minh ∆HBA đồng dạng với ∆ABC
b)tính BC,AH,BH
c)kẻ đường phân giác AD của góc A.Tính tỉ số DB/DC
Cho tam giác ABC vuông tại A (AB < AC), với đường cao AD.
a) Chứng minh tam giác ABC đồng dạng với tam giác DBA .
b) Trên đoạn AD lấy điểm E, gọi G là hình chiếu của C trên BE. Chứng minh BD.BC = BE.BG.
c) Trên đoạn CE lấy điểm F sao cho BF = BA. Chứng minh góc BEF bằng góc BFG
Cho tam giác ABC vuông tại A. Phân giác góc A cắt BC tại D. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. a) So sánh hai tam giác DEC và ABC. b) Chứng minh DB =DE.