a: Xét ΔABC và ΔAED có
AB/AE=AC/AD
góc A chung
Do đo: ΔABC\(\sim\)ΔAED
b: Ta có: ΔABC\(\sim\)ΔAED
nên BC/ED=AB/AE
=>30/ED=18/6=3
=>ED=10(cm)
a: Xét ΔABC và ΔAED có
AB/AE=AC/AD
góc A chung
Do đo: ΔABC\(\sim\)ΔAED
b: Ta có: ΔABC\(\sim\)ΔAED
nên BC/ED=AB/AE
=>30/ED=18/6=3
=>ED=10(cm)
cho tam giác ABC vuông tại A có AH là đường cao
a, cm : tg AHC đồng dạng với tg BAC . Suy ra AC^2 = CH.BC b, cm: tg HAB đồng dạng HCA . Viết các tỉ số đồng dạng c,Gọi I và K lần lượt là trung điểm của cạnh AH và HC . Chứng minh góc ABI = góc KAC d, Đường thẳng vuông góc với BC tại C cắt BI tại N , BN cắt AM tại M . CM : MI.BN=MN.BIcho tam giác ABC nhọn, AB<AC .Trên cạnh AB lấy điểm D(D khác A và B),trên cạnh AC lấy điểm E sao cho góc ADE = ACB
a) CM : tam giác ADE đồng dạng tam giác ACB
b)Gọi i là giao điểm của BC và DE. CM: IB.IC=ID.IE
c)Lấy M là trung điểm BC . CM \(\dfrac{AD.AB}{AE.AM}\) =2
Cho tam giác nhọn ABC, có 2 đường cao BM và CN cắt nhau tại H
a) cm: tg AMB đồng dạng tg ANC
b) BH.BM+CH.CN=BC.BC
c) Vẽ trung tuyến AD, trên AB,AC lần lượt lấy E,F sao cho AE=AF, EF cắt AD tại I. Chứng minh: \(\dfrac{IE}{IF}=\dfrac{AC}{AB}\)
Mình cần gấp lắm,mong các bạn giải giúp câu c nhé, a,b mình làm được.
Cho tam giác ABC vuông tại A có AB =15cm,AC=20cm. Kẻ đường cao AH (H thuộc BC) và đường phân giác BD (D thuộc AC) chúng cắt nhau tại E
a. CM tam giác ABD đồng dạng tgiac HBE và góc AED = ADE
b. Cm AB^2 = BH.BC
c. Gọi I là trung điểm của DE. Tia AI cắt BC tại K. Cm KE//AC
d. Gọi F là giao điềm của KE và AB. tính tỉ số diện tích tam giác BEF và tam giác BEA
Cho tam giác ABC có AB=15, AC=8,BC=100.Trên tia AB đặt E sao cho AE=20.Qua E vẽ 1 tia cắt AC tại D sao cho góc AED=góc ACB 1/Cmr tam giác ADE đồng dạng với tam giác ABC
2/ tính các cạnh còn lại của tam giác ADE
Cho tam giác ABC vuông tại A có AB=6cm AC=8cm,AD là tia phân giác của góc BAC(D thuộc BC)
a)Tính tỉ số DB/DC và độ dài các đoạn thẳng BC,DB,DC
b)Từ D kẻ DE vuông góc với AB tại E(E thuộc AB).Tính độ dài DE,AE và diện tích tứ giác AEDC
cho tam giác ABC vuông tại A có AB<AC . Kẻ đường cao AH . E,F lần lượt là hình chiếu của điểm H trên AB và AC.
a/ chứng minh: tam giác ABC đồng dạng với tam giác HBA từ đó suy ra AB^2= BC.CH
b/ Chứng minh: AE.AB=AF.AC
C/Gọi O là trung điểm của BC . Qua H kẻ đường thẳng song song với EF cắt AC tại M. K là giao điểm của AO với HM. Chứng minh: tam giác KAM đồng dạng với tam giác HCA
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!
cho tam giác ABC vuông tại A có AB<AC . Kẻ đường cao AH . E,F lần lượt là hình chiếu của điểm H trên AB và AC.
a/ chứng minh: tam giác ABC đồng dạng với tam giác HCA từ đó suy ra AB^2= BC.CH
b/ Chứng minh: AE.AB=AF.AC
C/Gọi O là trung điểm của BC . Qua H kẻ đường thẳng song song với EF cắt AC tại M. K là giao điểm của AO với HM. Chứng minh: tam giác KAM đồng dạng với tam giác HCA
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ
cho Δ abc vuông tại a có ab ≤ ac ,Từ điểm d trên cạnh bc kẻ một đường thẳng vuông góc với bc và cắt đoạn thẳng ac tại f , cắt tia ba tại e
a ) cminh △ aef đồng dạng với Δ dcf
b ) cminh hệ thức : ae . bc = ef . ac
c ) cminh : góc adf = góc fce
d ) tìm vị trí của d trên cạnh bc để tích de . df đạt giá trị lớn nhất
mọi người giúp mình với :<