cho tam giác ABC vuông tại A có AH là đường cao
a, cm : tg AHC đồng dạng với tg BAC . Suy ra AC^2 = CH.BC b, cm: tg HAB đồng dạng HCA . Viết các tỉ số đồng dạng c,Gọi I và K lần lượt là trung điểm của cạnh AH và HC . Chứng minh góc ABI = góc KAC d, Đường thẳng vuông góc với BC tại C cắt BI tại N , BN cắt AM tại M . CM : MI.BN=MN.BI