Số có 5 chữ số có dạng: \(\overline{abcde}\)
TH1: \(e=0\)
Số cách chọn \(\overline{abcd}\) là: \(C_4^6\)
TH2: \(e=5\)
\(a\) có 5 cách chọn
Số cách chọn \(\overline{bcd}\) là: \(C_3^5\)
Vậy lập được \(C_4^6+5.C_3^5=65\) số có 5 chữ số chia hết cho 5
Lời giải:
Gọi số cần tìm là $\overline{a_1a_2a_3a_4a_5}$
TH1: $a_5=5$
$a_1$ có 5 cách chọn
$a_2$ có 5 cách chọn
$a_3$ có 4 cách chọn
$a_4$ có 3 cách chọn
$\Rightarrow$ lập được $5.5.4.3=300$ số
TH2: $a_5=0$
$a_1$ có 6 cách chọn
$a_2$ có 5 cách chọn
$a_3$ có 4 cách chọn
$a_4$ có 3 cách chọn
$\Rightarrow$ lập được $6.5.4.3=360$ số
Tổng các số lập được: $300+360=660$ số