a: Xét ΔBAC có \(AB^2+CA^2=BC^2\)
nên ΔABC vuông tại A
b: AD=AB-BD=8cm
Xét ΔABC có ED//BC
nên ED/BC=AE/AC=AD/AB
=>ED/20=AE/16=2/3
=>ED=40/3(cm); AE=32/3(cm)
EC=AC-AE=16-32/3=16/3(cm)
a: Xét ΔBAC có \(AB^2+CA^2=BC^2\)
nên ΔABC vuông tại A
b: AD=AB-BD=8cm
Xét ΔABC có ED//BC
nên ED/BC=AE/AC=AD/AB
=>ED/20=AE/16=2/3
=>ED=40/3(cm); AE=32/3(cm)
EC=AC-AE=16-32/3=16/3(cm)
Cho tam giác ABC vuông tại A, có AB = 9cm, Ac = 12cm. Tia phân giác góc A cắt BC tại D, từ D kẻ DE vuông góc với AC (E€ Ac) a) tính tỉ số BD/CD b) Chứng Minh Rằng: BD.EC= CD.ED
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC một đường thẳng song song với cạnh BC cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho CF=BD. Gọi M là giao điểm của DF và BC Chứng minh rằng: MD/MF = AC/AB. Cho BC=8cm, BD=5cm, DE=3cm . Chứng minh tam giác ABC cân
Mik đang cần gấp!!!
Cho tam giác ABC vuông tại A có AB = 15cm, AC = 20cm. Kẻ đường cao AH.
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC, từ đó tính độ dài đường cao AH
b, Tia phân giác của góc HAC cắt BC tại D. Chứng minh tam giác ABD cân
c, Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh CE.CA = CD.CH
d, Chứng minh DC/DH = AC/AE
Cho tam giác ABC,AB=6cm,AC=8cm,AH là đường cao a)tính độ dài cạnh BC b)chứng minh tam giác HAB đồng dạng với tam giác HAC c)trên cạnh BC lấy điểm E sao cho CE=4cm,chứng minh BE^2=BH.BC d)tia phân giác của góc ABC cắt AC tại D.Tính diện tích tam giác CED Các bạn giúp mk vs mk cảm ơn trước
Cho tam giác ABC có AC = 8cm, BC = 16cm Gọi D và E là hai điểm lần lượt trên cạnh AB và AC sao cho BD = 2cm CE = 13cm Chứng minh rằng a. AAEB đồng dạng AADC b. AED= ABC, cho DE = 5cm Tính BC? C. AE.AC=AD.AB
Cho tam giác ABC vuông tại A có AB = 1cm, AC = 3cm. Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC.
a) Tính độ dài BD.
b) Chứng minh tam giác BDE đồng dạng với tam giác CDB.
c) Tính \(\widehat{DEB}+\widehat{DCB}\)
cho tam giác abc vuông tại B (AB<BC) đường phân giác BD
a/chứng minh tam giác ADB đồng dạng với tam giác ABC
b/cho AB=15cm, BC=20cm tính độ dài AC,AD,DC
c/gọi M,N lần lượt là hình chiếu của D trên AB, AC chứng minh DM×BA=BN×BC
cho tam giác ABC vuông tại A (AB<AC) có đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của đoạn thẳng BD. Chứng minh tam giác ABC đồng dạng với tam giác HBA. Qua điểm C kẻ đường thẳng vuông góc với tia AD tại E. Chứng minh AH.CD=CE.AD. Chứng minh tam giác HDE đồng dạng tam giác ADC và BD.AC=2AD.HE. Tia AH cắt tia CE tại F chứng minh AF^2=2BF.AE