a: Ta có: \(\widehat{ABH}+\widehat{A}=90^0\)
\(\widehat{ACK}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABH}=\widehat{ACK}\)
b: Xét ΔBOC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)
\(\Leftrightarrow\widehat{HBC}+\widehat{KCB}=180^0-128^0=52^0\)
\(\Leftrightarrow90^0+90^0-\widehat{ACB}-\widehat{ABC}=52^0\)
\(\Leftrightarrow180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=52^0\)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=128^0\)
=>\(\widehat{BAC}=52^0\)